
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 5, MAY 2013 1941
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The use of composite materials for electromagnetic shielding applications contributes to the effort of structure lightening in aerospace
industry. In these materials the strong interaction between the electromagnetic field and the microstructure makes the standard numer-
ical tools difficult to implement. Indeed these methods would involve an excessive number of degrees of freedom to describe details of
the microstructure. An efficient way to overcome this problem is the use of homogenization techniques providing the effective proper-
ties of heterogeneous materials. These effective properties can then be introduced in standard numerical tools to estimate the behavior
of shielding enclosures. A recent paper proposes an extension to microwave frequencies of quasistatic homogenization methods. It in-
troduces a characteristic length for the microstructure in the case of a square array of circular 2-D conductive phases embedded in a
dielectric matrix. In this paper, a method to identify this length parameter is proposed for random microstructures.

Index Terms—Electromagnetic compatibility, homogenization, Maxwell–Garnett model, phase distribution, 2-point probability
function.

I. INTRODUCTION

T HE use of composite materials enables to combine ad-
vantages from different constituents. The focus in this

paper is on epoxy resin filled in with carbon fibers, which
provides lighter shielding structures compared to standard
aluminum structures. In order to design composite structures,
adequate modeling tools are required. Electromagnetic compat-
ibility and especially shielding effectiveness (SE) of electronic
device enclosures made of composite materials are affected by
microstructural effects, and particularly by phase distribution
and size effects. Although significant, these effects are rarely
taken into account during the modeling stage due to the com-
putation time involved when using standard numerical tools
[1]–[4]. A solution is the use of a multiscale strategy such as
homogenization.
Homogenization tools have been developed to estimate the

behavior of composite materials [5]–[10], mostly under static
conditions. However, when the wave frequency increases, the
interaction between the electric field and the conductive phase
of the composite becomes strong. Classical homogenization
models such as Maxwell–Garnett model (MGM), cannot de-
scribe these dynamical effects. An extension of quasistatic
homogenization methods to microwave frequencies has re-
cently been proposed [11]. This model relies on the resolution
of basic inclusion problems [12], [13] in which each phase
of the composite is supposed to behave on average as a ho-
mogeneous ellipsoidal inclusion embedded in a homogeneous
infinite medium (HIM). The shape of the inclusion (namely the
axis ratio) is representative of the phase distribution in the real
composite, so that different phase distributions can be consid-
ered. The extension to microwave frequencies is made through
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the introduction of a microstructure dependent characteristic
length that is introduced in the definition of the HIM [11].
The main limitation is that this parameter has been identified
for a square array of circular cylinders only. This paper intends
to extend this homogenization model to more general cases of
microstructures. It is shown that the use of 2-point probability
functions (2PPF) provides the length parameter in the case
of a random distribution of conductive ellipsoidal fibers in a
dielectric matrix. The introduction of in the definition of the
HIM allows—in addition to the shape of the ellipsoid in the
inclusion problem—considering the effect of inclusion shape
in the homogenization process. This effect is shown to be non
negligible.
The first part of the paper presents the studied microstruc-

tures. Then the previously proposed dynamic homogenization
model (DHM) to obtain the equivalent homogeneous medium
(EHM) is briefly recalled. The proposed procedure to identify
the characteristic length is then explained. In the results sec-
tion, the shielding effectiveness of infinite sheets made of the
EHM is compared to the SE of the corresponding composite
material computed by the finite element method (FEM).

II. MICROSTRUCTURES

We consider three different microstructures (see Fig. 1)
made of randomly disposed identical conductive inclusions
(Phase 2, electric conductivity , dielectric permittivity ,
magnetic permeability and volume fraction ) with cir-
cular (a), x-aligned (b) or y-aligned (c) elliptical inclusions
embedded in a dielectric matrix (Phase 1, , , and ).
No contrast is considered on the magnetic permeability in this
study . These 2-D microstructures are equivalent to
3D microstructures composed of randomly disposed infinite
conductive parallel fibers surrounded by a dielectric matrix.

III. DYNAMIC HOMOGENIZATION MODEL (DHM)

The DHM provides the properties of the EHM to the com-
posite material. The EHM is used to determine the SE of sheets
made of biphasic composites. It can be used in a wider range of
frequency than classical homogenization models [11].
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Fig. 1. Illustrations of the microstructures studied.

A. Effective Permittivity

The complex effective permittivity of a
biphasic composite made of isotropic constituents, is given by
(1) [11]

(1)

where is the complex permittivity of the infinite medium in
the inclusion problems and is the depolarization factor in
the direction .

B. Depolarization Tensor

The depolarization tensor [5], [14] is computed from the
ellipsoidal shape of the inclusion representing the phase in the
inclusion problem. For dilute microstructures, made of identical
inclusions, the shape of the representing inclusion can be taken
as the shape of the inclusions in the real microstructure [5]. For
the three microstructures studied, the corresponding shapes are
infinite cylinders with a circular (a) or elliptical [(b) and (c)]
cross-section. As shown in Appendix A, if the infinite medium
is isotropic the depolarization tensor in the principal directions
is given by

(2)

where and are the elliptical cross-section semiaxes. The
depolarization factor in the direction can be obtained with

.

C. Infinite Medium

In the high frequency domain, the infinite medium is chosen
as [11]

(3)

is the wavelength in the effective medium and is the charac-
teristic size of the microstructure in the incident wave direction.
For low frequencies (high ), the model becomes equivalent to
MGM. In the case of a square array of parallel cylindrical fibers
embedded in a dielectric matrix, as studied in [11], is the diam-
eter of the fibers. But is unknown for random microstruc-

Fig. 2. 2-point probability functions of the conductive phase (Phase 2) for the
three microstructures in the horizontal (incident wave) direction. Computations
have been processed on a 2 mm side square filled with 50 inclusions.

tures. In the next section, it is shown that it can be identified
from 2PPF.

IV. CHARACTERISTIC SIZE OF RANDOM MICROSTRUCTURES

2PPF provide relevant information on microstructures and
are often used to characterize composite materials [15]. They
can be expressed, for the phase as

(4)

where is the indicator function ( if
and otherwise) and is the volume av-

eraging operator. According to our investigations, the 2PPF of
the conductive phase (Phase 2) provide the characteristic length
of the microstructure. This characteristic size is the length for

which is minimum in the direction parallel to the wave
vector

with (5)

The 2PPF are plotted on Fig. 2. These curves have been nu-
merically built from a random selection of and an exploration
of the microstructure at .
The characteristic sizes of the microstructures can be read

from these curves: , and
. The property is retrieved. It

can be noticed that , which is consistent with the
choice in [11] for identical circular fibers.

V. MODELING RESULTS

The SE of infinite homogeneous sheets made of the EHM ob-
tained with the DHM and MGM can be computed analytically.
It has been shown that, in the case of homogeneous sheets, the
FEM computation gives a SE estimate equal to the analytical so-
lution. [11]. The analytical results are compared to the SE com-
puted by FEM using the software COMSOL on meshes of
the corresponding microstructures (see Figs. 4–6).
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Fig. 3. Scheme of SE calculations configurations with the FEM domain
(dashed grey): PML (1), Air (2), and Studied sheet (3).

Fig. 4. Shielding effectiveness of a 6 mm sheet made of microstructure (a),
FEM (crosses with error bars), MGM (dashed line), and DHM (line) results.

The SE has been evaluated on 6 mm thick sheets sur-
rounded by air. Constituents properties are ,

, , , . The
incident field is a monochromatic perpendicular plane wave
propagating along direction with the electric field along
(see Fig. 3).
Due to computational resource limitation, the domain mod-

eled by FEM is limited to a heigth of 0.8 mm (direction ) and
is surrounded by two perfectly matched layers (PML). Periodic
conditions are applied on the top and the bottom of the domain.
In Figs. 4–6, the crosses are obtained from the average values

of the SE on a set of 20 FEM calculations with similar properties
(volume fraction, fiber shape, material properties) but different
(random) practical realizations. The error bars have been gen-
erated from the extreme values obtained by FEM. Their size is
directly connected to the size of the modeled domain. The do-
main used here does not include enough fibers to be fully repre-
sentative of the microstructure. This effect is dependant of the
fiber orientations, inducing a larger variation for (c) and a lower
one for (b) than for (a). Bigger modeling domains would reduce
error bars at the price of an increased computational cost.
Standard MGM fails to predict the SE at high frequency. The

DHM provides an estimate of SE close to FEM calculations.
Each microstructure feature is well captured with the DHM at
high frequency. As explained in [11], it is expected that the
error of the DHM becomes significant when the frequency is
increased so that the skin-depth becomes of the order of magni-
tude of the characteristic size .

Fig. 5. Shielding effectiveness of a 6 mm sheet made of microstructure (b),
FEM (crosses with error bars), MGM (dashed line), and DHM (line) results.

Fig. 6. Shielding effectiveness of a 6 mm sheet made of microstructure (c),
FEM (crosses with error bars), MGM (dashed line), and DHM (line) results.

The extension of quasistatic homogenization models to mi-
crowave frequencies can be used for a large range of random
microstructures.Microstructures similar to (b) and (c) have been
modeled. They are composed of aligned elliptical inclusions but
oriented in other directions than or . The results presented
in Fig. 7 for various orientations show that inclusion shape has
a significant effect on the SE properties of composite materials.
This effect is captured through the phase distribution and the
characteristic size of the microstructure.
Other microstructures, such as spherical or ellipsoidal con-

ductive inclusions surrounded by a dielectric matrix can be
modeled. This is part of the work in progress.

VI. CONCLUSION

A dynamic homogenization model for the effective permit-
tivity of composite materials has been used. This model is based
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Fig. 7. Shielding effectiveness of various composite sheets computed with the
DHM.

on the introduction of a characteristic length in quasistatic ho-
mogenization approaches. This model was initially restricted to
a square array of circular cylinders. It is shown in this paper
that the characteristic length can be identified on random mi-
crostructures from the computation of 2-point probability func-
tions. Together with phase distribution, this characteristic length
allows the definition of the properties of the equivalent homoge-
neous medium. This method is similar to the Maxwell-Garnett
estimate for low frequencies but extends its domain of validity
at high frequencies. The method is implemented to define the
shielding effectiveness of composite materials with very low
computational cost. The results have been satisfactorily com-
pared to finite element computations. Such approaches make
possible the design of composite shielding enclosures for elec-
tromagnetic compatibility applications.

APPENDIX

A. Depolarization Tensor

Stratton [14] gives the depolarization factors of an ellip-
soidal inclusion embedded in an infinite isotropic medium (the
ellipsoid semiaxes are aligned with the basis axes)

(6)

where and the are the ellipsoid semiaxes.

In our case, the inclusion is an infinite cylinder with an el-
liptical cross-section. Since the semiaxis is equal to , the
depolarization factor in the direction can be written

(7)

The depolarization tensor is then equal to

(8)
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