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Influence of Mechanical Boundary Conditions on Magnetoelectric Sensors
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Magnetic field sensors are an important application for magnetoelectric composite materials. In these devices the external magnetic
field is converted into an electric voltage. The sensitivity of the sensor is known to depend on different factors, including geometrical
and material parameters. This work deals with the modeling of the influence of mechanical boundary conditions on the sensitivity of

magnetoelectric sensors.

Index Terms—Finite element formulation, frequency effect, magnetoelectric effect, magnetostriction, piezoelectricity.

I. INTRODUCTION

AGNETOELECTRIC (ME) composites meet an in-

creasing interest in materials science research. A main
application using magnetoelectric composites is magnetic field
sensing. Magnetoelectric sensors mostly consist in layered
piezoelectric (PZ) and magnetostrictive (MM) materials. A key
point in ME sensing is to superimpose a harmonic magnetic
field at structure resonance frequency to the static—bias—mag-
netic field to be measured [1]-[3]. Due to the nonlinear behavior
of magnetostriction, the obtained harmonic electric voltage
depends on these two signals [4]. Many factors can modify
the sensitivity of the sensor and particularly material parame-
ters. Wu et al. [5] have experimentally demonstrated that the
sensitivity of the sensor is also influenced by the mechanical
loadings. Recently, Biju et al. [6] investigate the influence
of different mechanical boundary conditions on the electric
response without considering the nonlinear magneto-elastic
behavior. This paper intends to investigate the influence of
the mechanical boundary conditions on ME sensor sensitivity.
It is based on a finite element model for ME effect under
simultaneous harmonic and static excitations [4], [7]. Here, an
additional term in the coupled constitutive law is introduced
to consider the impact of an applied stress. It is shown that the
stress significantly modifies the sensor sensitivity through its
effects on both the static and dynamic behavior.

II. ME SENSOR CONFIGURATION

Fig. 1 shows the ME sensor configuration. This ME sensor is
a trilayer subjected to a uniform pressure on its right edge. The
left edge of the structure is clamped. A static magnetic field H,.
and a harmonic magnetic field h,. are applied simultaneously
along x-direction. Under static mechanical loadings, the mag-
netic behavior of the magnetostrictive materials is modified. In
accordance with standard experimental configurations, the am-
plitude of h,, is much smaller than the amplitude of Hg;.. The
PZT is used for the middle layer, its behavior obeys a standard
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Fig. 1. ME sensor configuration: trilayer structure of magnetostrictive (MM)
and piezoelectric (PZ) materials subjected to an harmonic magnetic excitation
hac superimposed to a static magnetic field H,... The mechanical boundary
condition is a uniaxial stress T'.. applied on the right side of the sensor, the left
side being clamped.

linear constitutive law. Terfenol-D is used for the inner and outer
layers, its behavior is nonlinear. The sensor is 5 mm long with
layer depths equal to 50 ysm for the MM and 200 jzm for the PZ.
The working plane is 2z — y plane.

We denote by T the stress tensor, f the driving force, u the
displacement, S the strain tensor, E the electric field, D the
electric induction and M the magnetization. We note X (@, b)
the small variation of a function X, depending on the variable
a and b, around a polarization point Xo(ag, bg)
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III. EQUILIBRIUM EQUATIONS
The mechanical equilibrium is given by
9%u

divT + f= Pm W

(@)
where p,, is the mass density.

No dielectric induction D, electric current J nor charge den-
sity p are considered in this paper. The electromagnetic equilib-
rium is then given by

curlH =0
divD =0.
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IV. CONSTITUTIVE LAWS

An applied static magnetic field H;. imposes a polarization
point for the ME sensor. The additional harmonic magnetic field
h,. introduces a small variation around the polarization point
given by the static field Hy,.. In this part, we first introduce the
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constitutive laws written in a general form for the determination
of the polarization point as a function of Hy.. To describe the
behavior of materials at a given polarization point, we then write
the constitutive laws in linearized form. Contrarily to previous
works [4], [7], these constitutive laws include an additional term
that cannot be neglected so as to consider the impact of an ap-
plied static stress.

A. Piezoelectric Behavior

Linear behavior is considered for the piezoelectric material

- . -
b)-(o 2)() @

Pz 2
where c,,. is the stiffness tensor at constant electric field, €,,, the

electric permittivity at constant strain and e,,. the piezoelectric
coefficients.

B. Magneto-Elastic Behavior

1) General Form: The total strain S is divided into the elastic
strain S¢ and the magnetostriction strain S#, S = 8¢ 4+ S# [8].
The magnetostrictive constitutive law is written according to the
following assumptions[4]:

* magnetostriction strain is assumed isochoric and isotropic;

* magnetic induction and magnetization are assumed to be

parallel;

* magnetostriction strain is modeled by a quadratic function

of the magnetization.

The magnetostriction strain can then be written

B M2
iy 3
1Bl

where J is a magnetostrictive coefficient identified from ex-
perimental magnetostriction curves, ¢ the Kronecker symbol
(6;; = 1 ifand only if ¢ = j), ||M]|| and ||B|| the norm of M
and B respectively.

Magnetic behavior (without considering stress) is described
by a Langevin function

1 1
M =M, (tanh(aH) a ﬁ) ™

with M, the saturation magnetization. The constant «x can be
defined as v = 3 /M, with xq the initial susceptibility of the
anhysteretic magnetization curve [9].

The magnetoelastic constitutive laws are written [7],
[10]-{12]

ms

- ) I3
ti; = Czjk-,lbkl — 1

AR 4
ab"’; (581 — 5%1) (8)

h7 = I/i]'bj —

where O, is the stiffness tensor of the magnetostrictive ma-
terial, v;; its reluctivity, t}, = C7% s}, In the case of isochoric
magnetostriction, we have s}, = 0, the relationship between

th; and s}, can be simplified using the shear modulus z*
thy = 2p” s 9)

If there is no mechanical loadings, s; — .s‘,il = 0, the second
equation of (8) is simplified into: h; = v;;b;. In the case of an
applied stress, sy, — sh; # 0, and this term allows directly the
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introduction of the stress in the “static” magnetic constitutive
law (8).

2) Linearized Form: In order to investigate the magneto-
elastic behavior under harmonic excitation, we introduce the
“small signal” magneto-elastic constitutive laws. Considering
B and S as state variables, the “small signal” magnetoelastic
constitutive laws are obtained by calculating the differential of

®)

~ th
—~ atlf ~ Qt’f '
hi= - 06;;1 skt [”” - ab,-e)kblj (51 = sk1)
ot 94,1+
= b, 11
30 6,)1,] J (1n)

From (9), the term 9t} /db; is calculated as previously detailed
in [7].
Equation (11) introduces the term of equivalent reluctivity 7

-~ O*tyy Oty Osi
Y=Y Bbion; b; b, } (12)

This equation shows that, as in the “static” case, the application
of a stress has to be considered with the term (sz; — s%;). Con-
trarily to previous works [4], [7], the term 8%}, /9b;0b; has to
be evaluated, with an additional derivation of the magnetostric-
tion strain. The applied stress is then considered twice: first for
the determination of the nonlinear magnetization curve for the
static excitation, the permeability being influenced by the stress
as detailed with (8), and secondly in the additional term of the
equivalent reluctivity v for the harmonic excitation.

In our case, at a given polarization point, depending on static
magnetic field Hy. and mechanical loadings, the constitutive
laws of the magnetostrictive material can then be written in the

E")’LS

matrix form
r::[‘ _ - a:ns S
H o - a'rn 5 ﬂm 8 B ’

At a polarization point, the overall constitutive laws of magne-
toelectric composite materials are combined from (5) and (13)
and written in the following system:

(sr1 — shy) +

(13)

T € & @) /s
D|=|-& ¢ o0 E (14)
H -q 0 v B

with € = 0 for the magnetostrictive material and q = 0 for the
piezoelectric material.

V. FINITE ELEMENT FORMULATION

In this part, the 2-D finite element formulation is developed
using Galerkin method and nodal element discretization. The
modeling of the magneto-electric sensor is done in two steps.
The first part uses a static finite element formulation in order to
calculate the magnetic vector potential, and then the magnetic
induction and magnetization in all elements of the geometry dis-
cretization. These values depend on the applied static magnetic
field and mechanical loadings. This first part is then used to esti-
mate the parameters of the constitutive laws of the magnetostric-
tive material, as presented in (10) and (11). These parameters
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Fig. 2. Magnetic induction curves in the absence of stress and under uniaxial
compressive and tensile stress (magnitude 15 MPa).

are implemented in the second part using a harmonic finite ele-
ment formulation. Finally, electric voltage V' is obtained in the
second part at resonance frequency.

A. Static Formulation

In this part only the magnetic problem is taken into consider-
ation. The magnetic constitutive law reads

ot
h, = I/,jjb' kl (15)

i g, Bk sk
where s.; — 52‘, is used in order to introduce the stress applied
on the sensor. dt},/db; is a function of the magnetic induction
B and magnetization M. Magnetic induction B is assumed to
be in the working plane (x, y) and invariant with z. Therefore
magnetic vector potential, B = curl(a), is along z-direction
and invariant with z.

The finite element formulation is deduced from magnetic
equilibrium (3)

[Kea]Ja =0 (16)
with [, the magnetic stiffness matrix. The Dirichlet boundary
conditions are related to the applied static magnetic field H,.,
corresponding to the magnetic field measured by the sensor. Due
to the nonlinearity of the problem, (16) is solved according to
fixed point technique.

In the case considered here, the applied stress T, is a uni-
form uniaxial stress along z-direction. S — S** is obtained using
the Hooke law: (S — S#) = ¢~ : T,.

Fig. 2 presents the magnetization curves for tensile and com-
pressive stress under static magnetic field.

As expected for materials with positive magnetostriction, the
permeability increases under tension, and decreases under com-
pression. As a consequence, the magnetic induction is higher
in the magnetostrictive parts of the sensor if a tensile stress is
applied.

B. Harmonic Problem

As the harmonic magnetic field h,. makes a variation around
a polarization point given by the static field H,., we need to
use the linearized form of the constitutive laws for the magne-
tostrictive material. The finite element formulation is a coupled
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formulation between mechanical, magnetic and electrical prob-
lems. From mechanical equilibrium (2) and constitutive laws
(14), the finite element formulation is

52

J
/[N] (div(cS —eE - gB)+f— pma—:> Q=0 (17)
Q )
where () corresponds to the study domain, ['; the boundaries
of the study domain, and NV the 1st order triangular shape func-
tions. Using the same development as in previous works [4], [7],
(17) becomes

j{[N]CSdQ - /chrad[N]dQ - ?{[N]eEdQ

r, ) r.

+ / Eegrad[N]dQ — %[N]qBrlQ—l— / Bqgrad[N]d
Q T, Q

+ pmw? / [Nud$) = — / [N]£dQ.
Q Q

(18)

With Dirichlet boundary conditions, using B = curlaand E =
—gradV (18) is simplified into
- /Ducgrad[N]dSZ + / gradVegrad[N]d(}
Q 9)
+ / curlaggrad[N]dQ
Q

+ pmw? / [NJudQ = — / [N]fdQ. (19)
Q Q
Equation (19) can be written in the matrix form

(Kyu — wMu + K,V +Kyea =f (20)

[K'u,u, = Ze f ,D[N]CID[N](JSZE

Qh
with Kup = — Y. | grad[N]egrad[N]dQ® (21)
Qe

Ko = — Ee fQF grad[N]qgrad[N]dQe

€° is the partial domain. Equation (20) can be complemented
with a damping term D(du/0t) = jwaolK,,u with o the
damping coefficient. Noting K}, = K., + jwolK,., — wM
gives

K*,u+ K,V +Ky.a=f.

w (22)

The electromagnetic finite element formulation is established
in a similar way, detailed in previous work [7]. The electromag-
netic formulation uses the potential vector magnetic a and po-
tential scalar electric V. The overall finite element system is fi-

nally described by the following system:

|K1l.1l |K71,p |K1L(l u f
Ky K, O vi]=10 (23)
Kow O Ko/ \a 0

C. Modeling Procedure

The modeling procedure is summarized in Fig. 3. After
the determination of the constitutive law (13) from the static
problem, the first part of the harmonic step is to determine the
first mechanical resonance frequency of the structure, corre-
sponding to the working frequency of h,. for the harmonic
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Fig. 3. Modeling procedure for the ME sensor, the mechanical boundary con-
ditions are considered in both static and harmonic problems.
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Fig. 4. Influence of the applied stress on the ME effect, according to different
approximations.

problem. The mechanical boundary conditions in harmonic
problem is taken into account by considering the complete
equivalent reluctivity term (12). In this context, considering a
given polarization point, the electric voltage is calculated for
different frequencies until reaching the first maximum. The
corresponding frequency is then kept constant for the harmonic
step.

VI. RESULTS AND DISCUSSION

For the considered sensor, the first resonance frequency has
been found to be about 160 kHz. As the structure is a trilayer,
this first resonance frequency corresponds to a longitudinal
mode, due to the horizontal symmetry of the system. We then
investigate the influence of the mechanical loadings in the
harmonic case. Fig. 4 shows the electric voltage as a function of
static magnetic field for different approximations: first without
mechanical loading, second considering tensile or compressive
stress in both static and harmonic problems, third without
considering tensile stress in the static problem (only in the
harmonic problem), and finally without considering stress in
the harmonic problem (12).

Considering the no-stress curve, the electric voltage first in-
creases as a function of the static magnetic field and then de-
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creases towards 0, as already shown in previous works [4], [7].
The linear region of the initial—increasing—stage is usually the
operating range for these sensors. Fig. 4 also shows how the ap-
plied stress modifies the sensitivity of the ME sensor: tension
increases the sensitivity of the sensor whereas compression de-
creases it, as observed experimentally in [5]. The main reason
for this evolution is that tension increases the permeability and
thus the magnitude of the magnetostriction strain. As a conse-
quence the electric voltage is higher for a given external mag-
netic field. Compression has an opposite effect. The numerical
analysis performed shows that the static contribution of the ef-
fect of stress on the sensitivity is greater than the dynamic con-
tribution. The proposed model can be used as a tool for struc-
tural optimisation of magneto-electric sensors under combined
magneto-mechanical loadings.

VII. CONCLUSION

This paper proposes an improvement of a ME model previ-
ously published in order to take into account mechanical load-
ings in the constitutive law of magnetostrictive materials. It is
shown that the stress has an impact not only on the magneti-
zation curve, but also on the equivalent reluctivity of the har-
monic problem. The model is in accordance with experimental
results from the literature. It allows to dissociate the different
contributions of the stress and gives an insight into the possible
strategies for sensor optimization. It could also be used to cali-
brate the packaging constraints in commercial magneto-electric
Sensors.
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