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Finite Element Harmonic Modeling of Magnetoelectric Effect
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The magnetoelectric (ME) effect in composite materials results from the combination of the magnetostrictive effect and the piezoelec-
tric effect via elastic interaction. This work focuses on the modeling of multilayer structures under dynamic excitation. The calculated
ME coefficient versus frequency shows the enhancement of the ME effect at mechanical resonance in accordance with experimental
measurements. The impact of electric conductivity is investigated. Applications on the ME sensor and tunable inductor are proposed.

Index Terms—Finite element formulation, frequency effect, magnetoelectric effect, magnetostriction, piezoelectricity .

I. INTRODUCTION

ESEARCH on magnetoelectric materials has increased
R rapidly in recent years due to many applications of such
materials as magnetic sensors, memory devices, variable induc-
tances [1]. The magnetoelectric phenomenon consists in the ex-
istence of a magnetization induced by an electric polarization,
or conversely an electric polarization induced by a magnetiza-
tion. Such a coupled property is characterized by ME coeffi-
cients. ME coefficients are larger in composite materials than
in homogeneous materials [2]. Moreover, the enhancement of
the ME coefficients at mechanical resonance frequencies [3] is
useful for many smart devices. Therefore, the design and opti-
mization for ME devices require accurate and compact numer-
ical modeling.

Up to now, there are several numerical models: the frequency
effect is integrated in the model of Liu et al. [4] but only from
the mechanical point of view. The model of Galopin et al. [5]
takes into account the nonlinear behavior of the magnetostric-
tive phase but only under quasi-static loadings.

The purpose of this work is to build a model based on the
finite element method and accounting for the nonlinearity of
magnetostriction and for the frequency effect (leading to eddy
currents). In a first part, the formulation based on a thermody-
namical approach is introduced. The model is then applied to a
magnetoelectric sensor and a comparison to experimental data
on a tunable inductor is proposed.

II. EQUILIBRIUM EQUATIONS

A. Mechanical Equilibrium

The mechanical equilibrium is given by

d*u

where T is the stress tensor, f the driving force, u the displace-
ment and p,,, the mass density.
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B. Electromagnetic Equations
The electromagnetic equations are given by

oD
H=J+ — 2
cur + e )

divD = p 3)

where H is the magnetic field, J the current density, D the elec-
tric induction, p the charge density p = 0.

III. CONSTITUTIVE LAWS
ME composite materials often consist in multilayers of piezo-
electric (pz) and magnetostrictive (ms) materials.
A. Electroelastic Behavior

Considering that piezoelectric materials are usually prepolar-
ized, the constitutive law is assumed to be linear around the po-

larization point _ _
N _fo ) (8
D/ l|lep ¢ E @)

where S is the strain tensor, E the electric field, C» the stiffness
tensor at constant electric field, €» the electric permittivity at
constant strain, and €y the piezoelectric coefficients. We note
X(a,b) the small variation of X around a polarization point
Xo(ag, bo)

0X o0X ~

X = 5. (a0, 00)a + —- (a0, by)b

B. Magnetostrictive Behavior

X=X,+X. (5

1) General Form: Unlike the piezoelectric material, the mag-
netostrictive material is not prepolarized. Its constitutive law is
strongly nonlinear and has to be accurately analyzed.

The total strain S is divided into the elastic strain S® and the
magnetostriction strain S#, S = S¢ + S* [6]. According to
Hooke’s law, the total stress is expressed by

tiy = Cir sk — siy) = Clffusm — 1 (6)
where C7'77, is the usual stiffness tensor of the magnetostrictive
material under static loading. In the case of an isotropic material,
(6) can be written using Lamé coefficients p* and \*

tij = 2[1,* (S,L'j — Sfj) + 5LJ)\* (Skk — Slklk) (7)
0;; is the Kronecker symbol (6;; = 1 if i = j, 0if i # j).

We assume that the magnetostriction phenomenon is iso-
choric and isotropic, and that the magnetostriction strain can
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be expressed as a parabolic function of the magnetic induction.
We can then write [5]

3
57] = %(3()7‘,1)]' — 5,;jbkbk) (8)
where (3 can be identified from experimental magnetostriction
curves of the magnetostrictive material [7].

Using the thermodynamical approach of Besbes er al. [8]
(writing Oty /0b; = Oh;/dsk1), taking s and b as independent
variables, and noting v;; the reluctivity tensor of the magne-
tostrictive material, the magnetic field can be expressed

ot s
hi = l/i]'bj — a—[fl (Skl — Sﬁcl) . (9)

2) Linearized Form: In order to describe the constitutive law
at a polarization point of the magnetostrictive material, the dif-
ferentials of (6) and (9) are calculated, leading respectively to
(10) and (11)

- _ oty ~
tij = CijriSel — by by, (10)
~ ot oy
hi = — ki gkl + |:Vi* — ki (Skl - 8” )
ab; I biob; ki
Oty 953 | =
=2 b, 11
*Bb; o, ] ) an

As s}, = 0 (isochoric magnetostriction), the term ¢}, /9b; can
be calculated from (8) in the case of isotropic elasticity

7 I3
%Lbkvl _ 2[1,*% _ u*ﬂa(?)bkblabiﬁklbjbj) (12)
where
4b;, itk=1=1
—2b;, ifk=1+#1
9(3bkb; — 6r1bjb;)/0b; = < 3by, iftk=1#1
3by, ifl=i#k
0, else.

C. Specific Loading Conditions

In this part, we consider two specific cases associated to the
applications presented in the last parts of the paper.

1) Polarization By # 0, Ty = 0: We obtain (s;; — 95‘1) =0.
Equations (10) and (11) become

_ o

tij = CijkiSkl — %bk (13)

_ ot ot 9t 7 ~

hi = — 50 + |:Vi' + ki —kl} bj. (14)
b 17 90, ab; |

These expressions (13) and (14) can be expressed in the form of
system (16), introducing an effective reluctivity 7° (15)

~eff _ Oty Oy (15)
Yig = Vit gy, o,
- ~ ~t ~
T Cu _qu S
<ﬁ> B [5 ’7°'T] <§> (16)
m

2) Polarization By = 0, To # 0: From (12), we get
otl,/9b; = 0. Equations (10) and (11) can be simplified into

tij = Cijridnl (17
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hi= (v — =k ) b
(” 17 Ob,0b; 9’“’) j

We can also introduce an effective reluctivity 7°f

(18)

241
~eff _ 97ty
Vij = Vij

CR T T

= v — 4Pp*(3si; — bijskr). (19)

From (17) and (18), the constitutive equation of the magne-
tostrictive material can be written

0)-F5 26)

IV. FINITE ELEMENT FORMULATION

(20)

In order to establish the 2-D finite element formulation, the
Galerkin method is chosen with nodal element discretization.

A. Assumptions
1) Mechanical Assumption: The displacement u is chosen
as mechanical variable in the finite element formulation

1
S = E(gradu + grad'u) = Du. 20D

We consider a 2-D problem with plane stress assumption (t3; =
t32 = t33 = 0) leading to the following relations:

e _ e __
{331—332;0

e _ A e e\ -
833 = S par (811 + 532)

(22)
The displacement vectors in the working plane (from which the
strain is defined) will be the unknown of the problem.

2) Electromagnetic Assumption: We consider a 2-D
problem:

* The displacement currents are neglected in the Ampere’s

law. Only the conducting current is considered.

* No magnetic induction is considered in the direction per-
pendicular to the working plane (z-direction) and B is as-
sumed to be invariant with z.

» The conservation of current along z-direction is written.
The electromagnetic equilibrium equations are written divD =
0 and curlH = J with J = 0 in the nonconducting region.

From these assumptions, we deduce:

* The magnetic vector potential a is along z-direction and
independent of z (a; = a2 = 0).

* The electric field in the working plane E , can be written:
E,6 = gradV.

* The electric field in the conductor is along z-direction and
can be calculated by: e3 = (a3 — a®) /0t where a° is a
constant with respect to z, y and z.

* Weuse J = ¢E where o is the conductivity (¢ = 0 in the
piezoelectric material and o # 0 in the magnetostrictive
material). The conservation of current along z-direction is
expressed by

O'/ 8((138; a’)

A

=0 (23)

where A is the total cross section of the conductor.
B. Finite Element Equation

1) Mechanical Formulation: From mechanical equilibrium
(1) and the constitutive laws (4) and (16) or (20), noting €2 the
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Fig. 1. Magnetoelectric bilayer.

study domain, I's the boundaries of the study domain, the finite
element formulation is

/ [N] <div(cS —e¢E—qgB)+f— pm%> Q=0 24)
Q ot

where [N] is the shape function. @ = O for the piezoelectric
material, and ¢ = O for the magnetostrictive material. Using
UdivA = divUA — AgradU, (24) becomes

jg[N}chQ—/ﬂchrad[N}dQ—?i[N]eEdQ-f—

. Eegrad[N]dQ —?{ [N]gBdQ+
Q r.

/ Bqgrad[N]dQ + pw? / [N]ud) = — / [N]tdQ (25)
Q Q Q

Imposing Dirichlet boundary conditions, (25) is simplified into
— / Ducgrad[N]dQ + / gradV egrad[N]dQ
Q Q
+/ curlaggrad[N]dQ
“ (26)
+pmw? / [NudQ = — / [NfdQ
Q Q

Equation (26) can be written in the matrix form

(Ikuu — UJQM)U + [KupV + Kysa=f (27)
with
Kiw =3 / D[N]cD[N]dQ*
€ Q¢
Kup = — Z/ grad[N]egrad[N]dQ°
e JO¢
Kya = — ;/ﬂ grad[N]ggrad[N]dQ (28)

Q¢ is the partial domain. Equation (27) can be complemented

u

. . D— = jwak,,u . .

with a damping term Ot J with a the damping co-
efficient. Noting K = Kuu + jwoKuu — w?M giyes

K:,u + KupV + Kyga = £ (29)

2) Electromagnetic Formulations: In a similar way, equa-
tions divD = p and curlH = J gives these expressions

K., u+ KV =p and Ku+ Kea=J (30)
with
Kaa = ) / grad[N]7*Tgrad[N]dQ®
€ Q’
Kpp = Z/ grad[Nlegrad[N]dQ° (31)
Ql

e
The conservation of current along z-direction from (23) com-
pletes the finite element formulation

ij/

EAQ
e

a3dQ° — jwAa® = 0. (32)
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Fig. 2. ME voltage coefficient versus frequency for a bilayer (using a damping
coefficient « = 2%).

Finally, we obtain the system

Ki, Kup Kyo 0 u f
Kpw Kpp O 0 Vil _|p
Kow 0 Koo J? a J 33
0 0 J S a® 0 (33)
— Kt
where Kpu = Kup describes the electro-mechanical coupling,
t
Kau = Kya describes the magneto-mechanical coupling. The

linear system (33) is solved using Gauss algorithm.
V. MAGNETOELECTRIC SENSOR

A magnetoelectric bilayer is prepolarized by a static magnetic
field H,4. under no applied stress. A harmonic magnetic field
haqc is applied, an electric voltage v, is obtained between the
electrodes of the piezoelectric layer (PZT). This structure is pre-
sented in Fig. 1.

The prepolarization of the magnetostrictive material gives a
constitutive law corresponding to (16). The magnetostrictive
material parameters correspond to those of CoFeoOy4 [9]. In
order to investigate the effect of conductivity, four different
values have been considered for 0. The ME coefficient defined
as & = Vae/hac is plotted in Fig. 2 as a function of the fre-
quency. v, is the real part of V' obtained from system (33), the
imaginary part has similar resonance effect.

As shown in Fig. 2, the resonance is well captured by the
model. This resonance effect has been reported by many re-
searchers (e.g., Ncai et al. [10]). The resonance frequency is
very close to the mechanical resonance frequency of the device
(f = 14.5 kHz). This frequency effect is strongly specimen
dependent (sensor dimension, material parameters, etc). In ab-
sence of precise information, a quantitative comparison to pub-
lished experimental results could not be performed. Concerning
the effect of the conductivity, low conductivities leads to two
peaks for the ME coefficient, the first one corresponding to the
anti-resonance effect. The anti-resonance effect vanishes while
conductivity increases. The higher the conductivity, the lower
the electric voltage. This effect (due to the skin effect) is partic-
ularly sensitive for high frequencies. It has not been mentioned
to our knowledge in earlier publications.

VI. TUNABLE INDUCTOR

The trilayer shown in Fig. 3 is a tunable inductor which is
described in [1]: Such electrostatically tunable magnetoelectric
inductors have a large tunable range of up to 450%.

The thickness of each magnetostrictive layer (23 pm) is much
less than that of the piezoelectric layer (500 ;sm). The modeling
process is presented in Fig. 4.

The ME inductor is controlled by a static electric field +F4,
between the electrodes of the piezoelectric layer. Using (20),
for different points of polarization corresponding to different
applied electric fields, the effective permeability is modified.
Therefore, different inductances are obtained. The experimental
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Fig. 3. Tunable magnetoelectric inductor.
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Fig. 4. Modeling procedure for the ME inductor, and mesh of a quarter of the
inductor.
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Fig. 5. Experimental results: Inductance versus frequency for different static
electric fields F,...
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Fig. 6. Numerical results: Inductance versus frequency for different static elec-
tric fields F4..

results obtained by Lou et al. [1] are shown in Fig. 5. Fig. 6
shows the corresponding numerical results.

The inductances obtained by the model cannot be quantita-
tively compared to the experimental ones since some material
parameters, such as 3 coefficient are unknown (3 has been taken
at 5.10~ for the calculation, in order to fit the maximum induc-
tance value at F;. = 0). But experimental and numerical results
have a very similar shape. The inductance decreases at high fre-
quencies due to the skin effect. The tunability of the inductor is
shown in Fig. 7, presenting the inductance value as a function of
the applied electric field. An increase of the electric field causes
an increase of the magnetostriction strain, and thus a decrease
of the effective permeability due to the nonlinearity of magne-
tostriction as shown by equation (18). The maximum tunability
can reach up to 250% in quasi-static regime.

VII. CONCLUSION

A 2-D finite element model has been built to investigate the
harmonic ME effect. The piezoelectric behavior is defined using
a linear constitutive law. A nonlinear constitutive law is used
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Fig. 7. Inductance versus applied electric field.

for the magnetostrictive material. A linearization procedure is
proposed, allowing the definition of a linear constitutive law,
depending on the polarization point and on the nonlinear con-
stitutive law parameters.

The model is first implemented in the case of a magnetic field
sensor. This case highlights the enhancement of ME coefficient
for a resonance frequency, close to the mechanical resonance
frequency. The second application concerns a tunable inductor.
This smart device takes advantage of ME effect to control the
inductance value. The model allows to capture this effect and
reproduces the trends of experimental observations. A quantita-
tive comparison would require a precise knowledge of specimen
dimensions and material parameters. An experimental charac-
terization to perform such a comparison is a work in progress.
The development of a 3-D approach is also the object of current
investigation.

APPENDIX
PROOF OF EQUATION (12)

From (6), the term tfj is written as

ti; = Ciirishy (34)

In the case of isotropic material, using Lamé coefficients, this
term is written [as in classical isotropic elasticity, see (7)]

tlilj = 2/1,*85]- + 6ij)\*sl;:k 35

Considering that the magnetostriction strain is isochoric, we
have s, = 0 and therefore, (35) can be simplified into

th; = 2p" sy (36)

Equation (12) is obtained by derivation of (36).
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