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Magnetoelectric effect in composite materials results from the combination of piezoelectric and

magnetostrictive effects. This paper focuses on the development of a harmonic finite element

formulation for such coupled problems, taking into account the nonlinearity of magnetostrictive

behavior. An application to a magnetic sensor operating under dynamic excitation is presented in

order to illustrate the formulation. The enhancement of the magnetoelectric coefficient when a low

amplitude harmonic field is superimposed to the static field to be measured is shown to be related

to the nonlinearity of magnetic and magnetostrictive behavior. VC 2011 American Institute of
Physics. [doi:10.1063/1.3553855]

I. INTRODUCTION

Magnetoelectricity consists in the coupling between

magnetic and electric fields even under static conditions.1

The magnetoelectric (ME) effect can be either intrinsic, in

single phase materials, or extrinsic, in composite materials.

Up to now, the highest magnetoelectric coefficients have

been observed for extrinsic ME effect. We consider here

only the extrinsic effect resulting from the combination of

magnetostrictive and piezoelectric effects. In composite

materials, this ME effect can be written in a simple way ei-

ther in the form of Eqs. (1) and (2):2

ME1 ¼
electrical

mechanical
:
mechanical

magnetic
; (1)

ME2 ¼
magnetic

mechanical
:
mechanical

electrical
: (2)

Recently, research activities on ME composite materials

have increased rapidly,1,3 but numerical approaches are still

limited due to the lack of a complete theoretical formulation.

A unified formulation is required to deal with nonlinearity

and frequency dependence of the ME effect. Up to now, sev-

eral numerical models have been developed: The frequency

effect is integrated in the linear model of Liu et al.,4 but only

from the mechanical point of view, and the model of Galopin

et al.5 takes into account the nonlinear behavior of the mag-

netostrictive phase, but only under quasistatic loadings.

Recently, a nonlinear dynamic scalar formulation has been

proposed.6

The objective of this paper is to build a numerical vector

model based on the finite element method, accounting for

nonlinearities of both magnetostrictive and magnetic behav-

ior. Magnetostriction is described as a quadratic function of

magnetization. Constitutive laws coupling mechanical/elec-

tric/magnetic effects are first detailed, and then introduced

into a finite element formulation. An application to the mod-

eling of a ME sensor under different configurations is finally

proposed. For such an application, it has been observed that

the sensor sensitivity is enhanced when a harmonic field at

the resonance frequency is superimposed to the static field to

be measured.7,8 The work reported in this paper proves that

this enhanced sensitivity is directly related to the nonlinear-

ity of magnetic and magnetostrictive behavior.

II. EQUILIBRIUM EQUATIONS

The variables used in the model are the stress tensor T,

the strain tensor S, the displacement u, the volumic force f,

the mass density qm, the electric field E, the electric flux den-

sity D, the electrical voltage V, the charge density q, the

electric conductivity r, the magnetic field H, the magnetic

induction B, the magnetic vector potential a, and the current

density J. For a vector X, we note xi the components of X.

A. Mechanical equilibrium

The mechanical equilibrium is given by

div Tþ f ¼ qm

@2u

@t2
: (3)

Noting Se the elastic strain, we consider a 2D problem with

plane stress conditions (t31¼ t32¼ t33¼ 0) leading to the fol-

lowing relations:

se
31 ¼ se

32 ¼ 0

se
33 ¼

k�

2l� þ k�
se

11 þ se
22

� �
:

(4)

As se
33 can be calculated afterwards, we only have to consider

the mechanical strains in the working plane. In the finite ele-

ment form, the mechanical variable chosen is then the dis-

placement u in the working plane:

S¼ 1

2
grad uþ gradt uð Þ ¼ Du: (5)
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B. Electromagnetic equilibrium

The electromagnetic equations are given by the standard

magnetodynamic Maxwell’s equations (neglecting the dis-

placement currents):

curl Hð Þ ¼ J; (6)

div D ¼ q; (7)

div B ¼ 0: (8)

Moreover, at the frequencies and geometry considered in this

paper (see Sec. V), eddy currents can be neglected because

the skin depth calculated from analytical equation is much

higher than the usual depth of magnetostrictive layers.6 From

Eq. (8), magnetic induction B can be written as: B 5 curl(a),

where a is the magnetic vector potential.

We consider a 2D problem with the following assump-

tions: Neither magnetic induction B, nor electric field E, are

considered in the direction perpendicular to the working plane

(z direction). Moreover, B and E are assumed to be invariant

with z. These assumptions lead to the following simplifications.

(i) The magnetic vector potential is along the z direction

and independent of z (a1¼ a2¼ 0).

(ii) The electric field in the working plane E== can be

written: E== ¼ grad V x; yð Þ.

The electric voltage V and the magnetic vector potential

along the z direction a3 are chosen as the electromagnetic

variables in the finite element formulation.

III. FINITE ELEMENT FORMULATION

Finite element method (FEM) is one of the most wide-

spread tools used to solve the partial differential equations

such as the given equilibrium equations (3), (6), and (7). The

FEM is usually associated with the variational methods or re-

sidual methods. The variational method for such a coupled

problem has been presented by Galopin et al.5 by minimizing

the energy function. The residual methods directly solve the

equilibrium equations. It is an advantage compared to the var-

iational methods, especially under harmonic loadings when

the energy functions are not easy to determine. In this paper, a

particular residual method—the Galerkin method—is chosen

to establish the 2D finite element formulation. This formula-

tion is well suited to our electro-magneto-elastic coupled prob-

lem. The constitutive law in the coupled problem can be

written in the generic matrix form of the following equation

[the caret denotes the use of Voigt notation (see Appendix A)]:

T̂

D

H

0
@

1
A ¼ ĉ �êt �q̂t

ê e at

�q̂ a m

2
4

3
5 Ŝ

E

B

0
@

1
A: (9)

In the case of piezoelectric material, the constitutive law is

expressed by

T̂

D

H

0
@

1
A ¼ ĉ �êt 0

ê e 0

0 0 m

2
4

3
5 Ŝ

E

B

0
@

1
A: (10)

In the case of magnetostrictive material, the constitutive law

is expressed by:

T̂

D

H

0
@

1
A ¼ ĉ 0 �q̂t

0 e 0

�q̂ 0 m

2
4

3
5 Ŝ

E

B

0
@

1
A: (11)

The coefficients e and q are, respectively, the piezoelectric

and magnetostrictive coefficients.

A. Mechanical formulation

The mechanical formulation is established by taking

into account the mechanical equilibrium (3) and the constitu-

tive law deduced from Eq. (9):

T ¼ c : S� et:E� qt:B:

Noting X the study domain, Cs its boundaries, the weak for-

mulation of the mechanical equilibrium equation is

ð
X

w: divTþ f � qm

@2u

@t2

� �
dX ¼ 0; (12)

where w is a vectorial test function. Integrating by parts, Eq.

(12) leads to

ð
X

Dw : T� w:f þ qmw:
@2u

@t2

� �
dX ¼

þ
Cs

T:n:w dC (13)

with n the normal vector to the boundary Cs. The term on

the right-hand side of Eq. (13) is related to the boundary con-

ditions. There are two types of boundary conditions we need

to contend with.

(1) Dirichlet boundary condition: The values of u are known

on a part of the boundary Cs

(2) Neumann condition: T:n¼ 0, the right-hand side of Eq.

(13) is zero.

Replacing S¼Du, E¼ grad V and B¼ curl(a), Eq. (13)

can be written as

ð
X

Dw : c : Du dX�
ð

x
Dw : et:grad V dX

�
ð

X
Dw : qt:curl að ÞdXþ

ð
X

qmw
@2u

@t2
dX

¼
ð

X
w:f dXþ

þ
Cs

T:n:w dC: (14)

In our mechanical problem no body force is considered

(f¼ 0). The magnetic vector potential a is along z direc-

tion, therefore: curl(a)¼ r*grad a3 with

r� ¼ 0 1

�1 0

� �
:

In the finite element formulation, the displacement u,

the electric potential V, and the vector potential a3 over an

element are related to the corresponding node values {u},

{V}, and {a3} using the shape functions [w], [Nv], and [Na]:
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u ¼ w½ � uf g
V ¼ NV½ � Vf g
a3 ¼ Na½ � a3f g:

(15)

Therefore, the strain S, the electrical field E, and the mag-

netic induction B are associated to the nodal displacements

and potentials by the derivatives [Gu], [Gv], and [Ga] of the

shape functions:

Ŝ ¼ D w½ � uf g ¼ Gu½ � uf g
E ¼ grad NV½ � Vf g ¼ GV½ � Vf g
B ¼ r�grad Na½ � a3f g ¼ r�½ � Ga½ � a3f g:

(16)

After discretization, Eq. (14) can be written in the matrix

form:

Kuu½ � � x2 M½ �
� �

uf g þ Kup

� 	
Vf g þ Kua½ � a3f g ¼ 0½ � (17)

with

Kuu½ � ¼
X

e

ð
Xe

Gu½ �t ĉ½ � Gu½ �dX

M½ � ¼
X

e

ð
Xe

qm w½ �t w½ �dX

Kup

� 	
¼ �

X
e

ð
Xe

Gu½ �t êt½ � GV½ �dX

Kua½ � ¼ �
X

e

ð
Xe

Gu½ �t q̂t½ � r�½ � Ga½ �dX

(18)

where Xe is the partial domain associated to the mesh ele-

ment e. Equation (17) can be complemented with a damping

term jxa Kuu½ � uf g with a the damping coefficient. Noting

K�uu

� 	
¼ Kuu½ � þ jxa Kuu½ � � x2 M½ � gives:

K�uu

� 	
uf g þ Kup

� 	
Vf g þ Kua½ � a3f g ¼ 0½ � (19)

B. Electromagnetic formulation

In a similar way, equations div D¼q and curl(H)¼ J

gives the following expressions:

Kup

� 	t
uf g þ Kpp

� 	
Vf g ¼ Q½ � þ Qn½ �

Kua½ �t uf g þ Kaa½ � a3f g ¼ I½ � þ In½ �
(20)

with

Kpp

� 	
¼
X

e

ð
Xe

GV½ �t e½ � GV½ �dX

Q½ � ¼
X

e

ð
Xe

q NV½ �tdX

Qn½ � ¼
X

e

þ
Cs

Dn NV½ �tdC

Kaa½ � ¼
X

e

ð
Xe

Ga½ �t r�½ �t ~v½ � r�½ � Ga½ �dX

I½ � ¼
X

e

ð
Xe

j3 NV½ �tdX

In½ � ¼
X

e

þ
Cs

Ht NV½ �tdC

(21)

where ~v is the equivalent reluctivity tensor accounting for

the magnetoelastic coupling (see Sec. IV B 2), Dn is the com-

ponent of D normal to Cs, j3 is the electric current along the

z direction, and Ht is the component of H tangent to Cs. In

the case of the sensor studied in the following we will con-

sider no electric charges (q¼ 0) and no current density (so

that j3¼ 0). We finally obtain the following system:

K�uu Kup Kua

Kpu Kpp 0

Kau 0 Kaa

2
4

3
5 u

V
a3

8<
:

9=
; ¼

0

0

In

2
4

3
5; (22)

where Kpu ¼ Kt
up describes the electro-mechanical coupling,

Kau ¼ Kt
ua describes the magnetomechanical coupling. Lin-

ear system (22) is solved using Gauss algorithm.

IV. CONSTITUTIVE LAWS

ME composite materials often consist in an assembly of

piezoelectric (pz) and magnetostrictive (ms) materials. The

electroelastic behavior is assumed to be linear. The magneto-

strictive behavior is nonlinear.

A. Electroelastic behavior

Considering that the piezoelectric material is prepolar-

ized, the constitutive law is assumed to be linear around the

polarization point:

~T
~D

� �
¼ ~c �~et

~e ~e

� �
pz

~S
~E

� �
: (23)

~X ~a; ~b
� �

—applied to a mechanical, electric or magnetic

field—denotes the small variation of X around a polarization

point X0(a0, b0):

~X ¼ @X

@a
a0; b0ð Þ~aþ @X

@b
a0; b0ð Þ~b; X ¼ X0 þ ~X: (24)

B. Magnetostrictive behavior

1. General form

The magnetostrictive material is not prepolarized, there-

fore its constitutive law is strongly nonlinear and has then to

be investigated. The total strain S is divided9 into the elastic

strain S
e and the magnetostriction strain S

l, S¼ S
eþ S

l.

According to Hooke’s law, the total stress is expressed by

tij ¼ Cms
ijkl skl � sl

kl

� �
¼ Cms

ijklskl � tlij; (25)

where Cms
ijkl is the usual stiffness tensor of the magnetostric-

tive material under static loading.

In the case of an isotropic material, Eq. (25) can be writ-

ten using Lamé coefficients l* and k*:

tij ¼ 2l� sij � sl
ij


 �
þ dijk

� skk � sl
kk

� �
; (26)

where dij is the Kronecker symbol (dij¼ 1 if i¼ j and dij¼ 0

if i 6¼ j).
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The magnetostriction phenomenon is assumed to be iso-

choric10 (meaning sl
kk ¼ 0) and isotropic. Magnetostriction

strain is also assumed to be a parabolic function of the mag-

netization. Modifying the model of Galopin et al.,5 who con-

sidered the magnetostriction strain S as a parabolic function

of the magnetic induction B, and assuming that B and M are

collinear, the magnetostriction strain can be expressed by

sl
ij ¼

b
2l2

0

3bibj � dijbkbk

� �m2

b2
; (27)

where m2¼mimi, b2¼ bibi, and b is deduced from experi-

mental results.11

Using the thermodynamical approach of Besbes et al.12

(writing @tkl=@bi ¼ @hi=@skl) with respect to the independent

variables S and B, the magnetic field can be expressed as

hi ¼ mijbj �
@tlkl

@bi
skl � sl

kl

� �
; (28)

where mij is the reluctivity tensor of the magnetostrictive

material.

2. Linearized form

In order to describe the constitutive law at a polarization

point of the magnetostrictive material, the differentials of

Eqs. (25) and (28) are calculated, leading, respectively, to

Eqs. (29) and (30):

~tij ¼ Cms
ijkl~skl �

@tlij
@bk

~bk; (29)

~hi ¼ �
@tlkl

@bi
~skl þ

@mikbk

@bj
� @2tlkl

@bi@bj
skl � sl

kl

� ��
þ @tlkl

@bi

@sl
kl

@bj

�
~bj:

(30)

Equation (30) introduces the terms to be calculated: @tlkl=@bi

and @vikbk=@bj correspond respectively to the coupling ma-

trix q and the equivalent reluctivity ~vij. Two additional terms

@2tlkl=@bi@bj

� �
skl � sl

kl

� �
and @tlkl=@bi

� �
@sl

kl=@bj

� �
also need

to be estimated.

(1) As sl
kk ¼ 0 (isochoric magnetostriction), the coupling

matrix @tlkl=@bi can be calculated as follows in the case

of isotropic elasticity:

@tlkl

@bi
¼ 2l�

@sl
kl

@bi
: (31)

Using Eq. (27) we obtain

@tlkl

@bi
¼ l�b

l2
0

@ 3bkbl � dklbjbj

� �
@bi

m2

b2

�

þ 3bkbl � dklbjbj

� � @ m2=b2
� �
@b

@b

@bi

�
(32)

with

@b

@bi
¼ bi

b

and

@ 3bkbl � dklbjbj

� �
@bi

¼

4bi if k ¼ l ¼ i

�2bi if k ¼ l 6¼ i

3bl if k ¼ i 6¼ l

3bk if l ¼ i 6¼ k

0 else

8>>>>><
>>>>>:

:

(2) The nonlinear relationship between M and H is written

using a Langevin-type equation:13

M ¼ Ms cotanh AsHMsð Þ � 1

AsHMs

� �
; (33)

with Ms the saturation magnetization, the constant As can

be defined as As ¼ 3l0v0=M2
s with v0 the initial suscepti-

bility of the anhysteretic magnetization curve.14 Replac-

ing in Eq. (33) and using B¼ l0(HþM), it comes:

B ¼ l0 H þMs
1

tanh 3l0v0H=Msð Þ �
Ms

3l0v0H

� �� �
:

(34)

(3) The first term of the equivalent reluctivity ~vij can be

expressed as follows:

@vikbk

@bj
¼ vij þ

@vii

@b

bibj

b
: (35)

Unlike the initial reluctivity that is diagonal (mij= 0 only

if i¼ j), this expression introduces extra diagonal terms,

which may not be negligible.

(4) Additional terms @2tlkl=@bi@bj

� �
skl � sl

kl

� �
and @tlkl=

�
@biÞ @sl

kl=@bj

� �
have to be estimated: Knowing @2 3bkblð½

� dklbpbpÞ=@bi@bj� skl � sl
kl

� �
¼ 4 3sij � dijskk

� �
, the term

@2tlkl=@bi@bj

� �
skl � sl

kl

� �
is calculated from the deriva-

tion of Eq. (32). In the case of no applied strain,

skl � sl
kl ¼ 0, therefore the term @2tlkl=@bi@bj

� �
skl � sl

kl

� �
vanishes. In a similar way, the term @tlkl=@bi

� �
@sl

kl=@bj

� �
can be calculated using Eq. (36):

@ 3bkbl � dklbpbp

� �
@bi

@ 3bkbl � dklbpbp

� �
@bj

¼ 6 b2
i þ 3b2

� �
if i¼j

6bibj if i 6¼ j

�
: (36)

In the case of no applied magnetic field, sl
kl ¼ 0, there-

fore @tlkl=@bi

� �
@sl

kl=@bj

� �
is reduced to zero. Introducing the

effective reluctivity

~mij ¼
@mikbk

@bj
� @2tlkl

@bi@bj
skl � sl

kl

� �
þ @tlkl

@bi

@sl
kl

@bj

� �
; (37)

the constitutive law of magnetostrictive material can be

expressed by the following system:

~T
~H

� �
¼ ~c �~qt

�~q ~m

� �
~S
~B

� �
: (38)

The final local constitutive law of the system combined from

Eqs. (38) and (23) is given by
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~T
~D
~H

0
@

1
A ¼

~c ~et �~qt

�~e ~e 0

�~q 0 ~v

2
4

3
5 ~S

~E
~B

0
@

1
A (39)

with ~e ¼ 0 for the magnetostrictive material and ~q¼0 for

the piezoelectric material.

V. APPLICATION—MAGNETIC SENSOR

A. Sensor configuration

The model has been applied to a magnetic sensor pro-

posed by Huong Giang and Duc.15 In order to estimate the

performance of such a sensor, we focus on the numerical

modeling of the corresponding sandwiched structure presented

in Fig. 1. The material parameters correspond to those of

Terfenol-D (Appendix B) bonded with PZT (Appendix C).

A schematic view of the sensor in 2D configuration is pre-

sented in Fig. 2.

The sensor is a trilayer consisting in a piezoelectric layer

between two magnetostrictive layers. In order to enhance the

sensitivity of the sensor for the measurement of a static mag-

netic field Hdc, a low harmonic magnetic field hac is usually

superimposed using a coil surrounding the trilayer and

excited at mechanical resonance frequency of the sensor

hack k << Hdck kð Þ. Therefore a harmonic electric voltage is

obtained between the electrodes of the piezoelectric layer.

B. Modeling procedure

The numerical implementation of this magnetic sensor

consists in two sequential finite element problems. The first is

a static problem allowing the calculation of the coefficients to

establish the constitutive law of the magnetostrictive phase.

The corresponding loading condition is no applied stress but

initial magnetic induction due to the presence of the static

magnetic field Hdc. After obtaining all parameters of the mag-

netostrictive material under this specific loading, the second

finite element problem is to solve the electric voltage under

applied harmonic magnetic field at resonance frequency. The

numerical procedure is detailed in Fig. 3.

C. Static FE problem

The magnetostrictive coefficients qij depend on the

applied static magnetic field Hdc. We first investigate with

the proposed 2D model the value of these coefficients.

Figures 4 and 5, respectively, plot the value of q11 and q21 as

a function of the magnetic induction in the magnetostrictive

layer. q11 (resp. q21) links the component 11 (resp. 22) of the

stress to the component 1 of the magnetic induction.

In the case of the sensor studied in this paper the mag-

netic induction in the sensor is redirected inside the magneto-

strictive phase, whatever the orientation of the magnetic field

outside the sensor. The induction is then mainly along direc-

tion 1 (in-plane). As shown in Figs. 4 and 5, the values of q11

and q21 are almost insensitive to the out-of-plane component

when it is very low. Thus, the determination of the in-plane

component of the induction will be sufficient to define the

magnetostrictive parameters with good accuracy. Moreover,

it can be shown that the in-plane component of the induction

in the magnetostrictive layer is proportional to Heff¼Hdc

sin u, where u is defined on Fig. 6.

D. Harmonic FE problem

As the magnetostrictive material has a low conductivity,

eddy currents have negligible effect at the resonance fre-

quency,6 therefore the resonance frequency is the same as

the mechanical resonance frequency: 73 kHz for the first

FIG. 1. (Color online) Magnetic sensor configuration.

FIG. 2. (Color online) Magnetic sensor configuration.

FIG. 3. (Color online) Modeling procedure.
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longitudinal mode. The magnetostrictive parameter obtained

with the static FE problem are implemented to solve the har-

monic FE problem.

Figure 7 presents the electric voltage between the elec-

trodes of the piezoelectric layer as a function of the applied

in-plane static magnetic field. The electric voltage increases

linearly in a first time and then decreases and approaches 0.

The numerical results have a shape very similar to the

experimental results obtained by Huong Giang and Duc.15

This shape is highly correlated to the coefficient q11. Indeed

considering the sensor configuration, the harmonic magnetic

field hac in the magnetostrictive layer is only in the in-plane

direction. In these conditions only the coefficients q11 and

q21 play a role in the sensor response. The coefficient q21

links the in-plane component of the magnetic field to the

strain along the direction normal to the layers. As the me-

chanical boundaries are free on the upper and lower borders

of the sensor in the considered configuration, this strain

along direction 2 will not be transmitted to the piezoelectric

layer. Thus, for this particular sensor configuration and

boundary conditions, the obtained electric voltage is mainly

related to the coefficient q11.

Moreover the obtained ME coefficients are much higher

than those obtained in the static case. The static coefficients

can be retrieved by moving the frequency of Hdc far from

the resonance frequency. This enhancement of ME coeffi-

cients7 by adding a small magnetic field oscillating at reso-

nance frequency hac is due to the nonlinearity of magnetic

and magnetostrictive behavior. Indeed if this behavior was

linear, a superimposition principle would apply, and only the

electric response corresponding to the alternative component

of the magnetic field would be amplified by the resonant

effect. The response corresponding to the static magnetic

field would only be amplified in an amount corresponding to

the static magnetoelectric coefficient. As the behavior is non-

linear, the static and resonant effects are coupled, and the

magnetoelectric effect corresponding to the static field is

enhanced through the resonance of the device.

FIG. 5. (Color online) Magnetostrictive coefficient q21 as a function of the

magnetic induction in the material.

FIG. 6. (Color online) Rotation of the static field.

FIG. 7. (Color online) Electric voltage vs magnetic field applied in the in-

plane direction.

FIG. 4. (Color online) Magnetostrictive coefficient q11 as a function of the

magnetic induction in the material.
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E. Rotation of magnetic static field

The magnetic sensors can be used not only to measure

the amplitude of static magnetic field but also its orientation.

We consider the static magnetic field Hdc turning around the

harmonic magnetic field hac, which is along the polariza-

tion’s direction of the magnetostrictive layers. u is the angle

between Hdc and the polarization’s direction of the piezo-

electric layer presented in Fig. 6. The rotation of Hdc can be

simulated by orthogonal projections of Hdc onto x and y and

writing the corresponding Neumann boundary conditions.

Figure 8 (left hand side) shows the electric voltage as a func-

tion of the rotation angle. On the right-hand side, this voltage

has been plotted as a function of the effective in-plane com-

ponent Hdc sin u of the applied magnetic field.

Again, there is a very satisfactory qualitative agree-

ment with the experimental results of Huong Giang and

Duc.15 A quantitative comparison process should be under-

taken, but the properties of the constituents have to be

identified precisely. This is a work in progress. The right-

hand side plots indicate that as far as the material remains

in the linear stage of the magnetic behavior, the magneto-

electric response is proportional to sin u. The magnetic sat-

uration modifies this dependence to the orientation of the

applied magnetic field. The right-hand side plots indicate

that the magnetoelectric response of the sensor when plot-

ted as a function of Hdc sin u is the same than the uniaxial

characterization of Fig. 7. This result is consistent with the

observation mentioned in the static analysis (Sec. V C)

that—for this sensor configuration—the magnetic induction

in the magnetostrictive layer is mainly directed in the in-

plane direction and itself proportional to Hdc sin u. For this

sensor configuration, a unique characterization with a static

magnetic field in the in-plane direction is enough to define

FIG. 8. (Color online) Electrical

response of the ME sensor for different

static magnetic-field values as a function

of the rotation angle u (left) and of the

effective in-plane magnetic-field compo-

nent Heff¼Hdc sin u (right). The

straight lines reproduce the result of Fig.

7 (u¼ 90�).
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the response for a static magnetic field in any direction.

This sensor cannot be used to measure the orientation and

the intensity of the magnetic field in a single measurement.

A 2D magnetic sensor could be built using two multilayer

devices (or performing two measurements in different

directions). It could also be interesting to change the me-

chanical boundary conditions of the sensor in order to let

the coefficient q21 play a role in the overall response of the

sensor. The choice of another type of microstructure (for

instance, matrix/inclusions instead of multilayers) could

also be studied. The proposed modeling approach provides

a tool to explore such an optimization of 2D magnetic sen-

sors based on magnetoelectric effect.

VI. CONCLUSION

In this paper, we propose a 2D finite element model to

investigate the magnetoelectric effect under harmonic load-

ings for high sensitivity magnetic field sensors. In such pie-

zoelectric/magnetostrictive composites, the piezoelectric

material is prepolarized. The corresponding constitutive law

is thus defined as linear. The magnetostrictive material is not

prepolarized, and a nonlinear constitutive law has to be used.

An appropriate linearization procedure depending on the

polarization point of the magnetostrictive material is pre-

sented. The model has been applied to a typical configuration

of magnetic sensor, with very satisfying qualitative results,

whatever the relative orientation between the sensor and the

applied magnetic field. This approach gives a deepened

insight on the magnetoelectric sensor working principle. The

enhancement of the magnetoelectric coefficient when a low

amplitude harmonic field is superimposed to the static field

to be measured is shown to be related to the nonlinearity of

magnetic and magnetostrictive behavior. The proposed mod-

eling provides a tool to explore the possibility to build mag-

netic sensors with optimal configurations—topology,

boundary conditions—for high sensitivity 2D or 3D meas-

urements. An experimental validation in order to perform

quantitative comparison is a work in progress. The develop-

ment of a 3D model is the further step of this study.

APPENDIX A: VOIGT NOTATION

Voigt notation takes advantage of the symmetry proper-

ties of a tensor to reduce its order. The stress tensor T̂, the

strain tensor Ŝ and the stiffness tensor ĉ are presented as

follows:

T̂¼ t11 t22 0 0 0 t12ð Þt;

Ŝ ¼ s11 s22 s33 2s23 2s31 2s12ð Þt;

ĉ ¼

c1111 c1122 c1133 c1123 c1131 c1112

c2211 c2222 c2233 c2223 c2231 c2212

c3311 c3322 c3333 c3323 c3331 c3312

c2311 c2322 c3333 c2323 c2331 c2312

c3111 c3122 c3133 c3123 c3131 c3112

c1211 c1222 c1233 c1223 c1231 c1212

0
BBBBBB@

1
CCCCCCA
:

APPENDIX B: PROPERTIES OF MAGNETOSTRICTIVE
MATERIAL

(1) Stiffness tensor:

1:24 0:61 0:61 0 0 0

0:61 1:42 0:61 0 0 0

0:61 0:61 1:42 0 0 0

0 0 0 0:54 0 0

0 0 0 0 0:54 0

0 0 0 0 0 0:63

2
6666664

3
7777775
� 1010Pa;

(2) magnetic properties: l0Ms¼ 1T, v0¼ 99;

(3) magnetostrictive parameter: b¼ 25� 10�6;

(4) density4: 9200 kg/m3.

APPENDIX C: PROPERTIES OF PIEZOELECTRIC
MATERIAL

(i) Stiffness tensor:

3:19 1:43 1:43 0 0 0

1:43 3:19 1:43 0 0 0

1:43 1:43 2:67 0 0 0

0 0 0 0:68 0 0

0 0 0 0 0:58 0

0 0 0 0 0 0:58

2
6666664

3
7777775
� 1010Pa;

(ii) Dielectric permittivity4:

15:92 0 0

0 15:92 0

0 0 15:92

2
4

3
5� 10�9A s=V mð Þ;

(iii) Piezoelectric matrix4:

0 �5:9 0

0 �5:9 0

0 15:2 0

0 0 10:5
0 0 0

10:5 0 0

2
6666664

3
7777775
�N= V mð Þ;

(iv) Density4: 7700 kg/m3.
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