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A B S T R A C T

Magnetic properties of electrical steels exhibit a strong sensitivity to mechanical stress; this phenomenon is
known as magneto-elastic coupling. Mechanical stress affects microstructural features of soft magnetic materials,
which in turn leads to a change in their magnetic characteristics. Therefore, the magneto-elastic coupling in
these materials needs to be studied and modeled accurately. This paper is devoted to the development of an
analytical magneto-elastic hysteresis model. A recently proposed analytical hysteresis model based on Kádár
product approach is modified to model the magnetoelastic effects using a multi-scale approach. The proposed
model is validated using the quasi-static hysteresis loops measured for a non-oriented (NO) material (M235-35A)
subjected to uni-axial compressive stress and tensile stress. The proposed formalism is applicable to model the
reversible effects of stress (in elastic range) and it offers a closed form equation. A stress-dependent coercive
parameter is introduced in this equation using a simple numerical procedure. Thus the model can be im-
plemented easily in circuit and field analyses.

1. Introduction

Magneto-elastic coupled behavior of electrical steels plays an im-
portant role in the performance of electrical machines, particularly
when used in high-speed applications [1–5]. The main causes of in-
duced mechanical stress in electrical machines are manufacturing and
assembly processes, temperature gradients, or centrifugal forces [2].
The effects of mechanical stress on magnetic behavior can be observed
in terms of change in permeability and losses [6]. The relationship
between mechanical stress and magnetic properties of soft magnetic
materials has been extensively studied [7–12]. The applied stress sig-
nificantly affects the magnetic domain configuration of magnetic ma-
terials [13]. These effects are evident from Fig. 1 in terms of variations
in shape of hysteresis loops under various applied stress conditions.

As depicted in the figure, mechanical stress leads to localized bul-
ging of hysteresis loops which is called kink, and hysteresis loops at
different stress levels pass through points (P1 and P2) known as crossing
points. The local widening (kink) and the crossing points [12] have
attracted attention of different researchers [8–10]. These effects were
reported by Bozorth [12], and they were correlated with Villari reversal
for iron alloys [12,14,15]. In Ref. [11], the effect of stress on hysteresis

loops considering the kink and crossing points is modeled using Brown's
stress field and Bozorth stress field. In iron-silicon steel, compressive
stress affects the properties more significantly compared to tensile
stresses [16]. In the present work, modeling of hysteresis loops under
moderate compressive and tensile stresses is investigated.

Numerous modeling approaches are available in literature to ap-
proximate magneto-elastic hysteresis loops [17–20]. Most of them are
developed through extensions of classical hysteresis models [17] such
as Jiles-Atherton [18] and Preisach formalisms [19]. Their applicability
is limited to isotropic materials for short range strains/stresses, and
multi-axial stresses are rarely considered. Another approach known as
multi-scale (MS) approach is based on an energy equilibrium which
considers exchange energy, magneto-crystalline energy, magneto-static
energy, and elastic energy [20]. Hysteresis effects are included in the
MS approach by adding an irreversible magnetization derived from an
approach given in Ref. [21]. This strategy can be successfully applied to
multi-axial stress configurations. However, it needs special attention in
its numerical implementation. A simplification in the MS approach for a
unidirectional magnetic field case provided an anhysteretic magneti-
zation function [22] that could be used as a basis for magneto-elastic
hysteresis models.
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This work deals with an extension of a recently proposed analytical
hysteresis model [23] in order to consider magneto-elastic effects. The
model has been developed using the Kádár product approach with the
modulated sum of a linear reversible (βH) term and a non-linear irre-
versible (tanh also known as T(x) model [24–26]) term, which is called
hybrid ‘product—T(x)’ model [23]. The T(x) model can be considered
as a close approximate of the Langevin and Brillouin functions [27]. It
can also be applied in its inverse form as B is considered as the input
and H as the output of the model [27]. Moreover, using hyperbolic
distribution in the Everett integral of the classical Preisach model, it can
be evaluated analytically [28]. The model needs standard magnetic
parameters such as maximum magnetization, coercivity, and initial
differential permeability. An analytical function (in terms of hyperbolic
functions) for the anhysteretic magnetization is derived using the MS
approach [22]. The present model considers magneto-elastic effects
using an anhysteretic function derived from the MS approach as an
irreversible magnetization component in the Kádár product approach.
Effect of stress is also considered in the very low field region using a
modified reduced Rayleigh constant. The well-observed crossing points
and the kink are modeled through the coercive force parameter using a
Gaussian function [29]. A closed form expression is derived as a hybrid
‘product-MS’ model and kink effects are then considered in the model
using a simple numerical procedure in order to predict complex mag-
neto-elastic behavior. The model parameters are identified using mea-
sured hysteresis loops at two stress levels (for compressive stress: 0 and
30 MPa and for tensile stress: 0 and 30 MPa). The computed hysteresis
loops at other stress levels are in close agreement with the measured
loops.

2. Effect of mechanical stress on magnetization process

Numerous studies on the effect of mechanical stress on micro-
structural features of soft magnetic materials have been reported in
literature [13, 30–33]. Due to the complicated variations in micro-
structural features of a material under stress, the coupled magneto-
elastic behavior cannot be explained fully with change in domain
configurations [30]. The main mechanism of the process of magneti-
zation has three steps [31]: (i) Domain wall motion due to stress in-
duced pressure on 900 domain walls, (ii) variation in energy of some
pinning sites, (iii) change in domain structure in an irreversible manner
and (iv) rotation of the magnetization out of the easy axes due to
magneto-elastic energy contribution. Diversified nature of pinning sites
makes it difficult to consider the effects of stress on the energy of
pinning sites. The energy of some of the pinning sites that are present in
a demagnetized state may increase [33]. In this work, the kink is
modeled in terms of a coercive field coefficient using a simple Gaussian
function.

3. Magneto-elastic modeling using a hybrid approach

The idea of Kádár product approach is to model the magnetic sus-
ceptibility as a modulated sum of reversible and irreversible terms [24].
The analytical anhysteretic magnetization based on MS model [22] is
used in the paper as a component of a description similar in spirit to the
Kádár product model yielding a simple scalar magneto-elastic model.
The MS and Kádár product models are briefly discussed in the following
subsections.

3.1. Analytical anhysteretic magnetization based on multi-scale approach

An analytical anhysteretic magnetization is derived in Ref. [22] for
isotropic magnetic materials considering magneto-mechanical coupling

for multi-axial stresses. The expression for anhysteretic magnetization
derived from the volume fraction of domains (based on the Boltzmann
probability function) along an ith (i is x, y, and z) direction is [22]:
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Here, Ms is the saturation magnetization, κ = μ0AsMs,
= =A e i x y z, , ,i s ii ; αs = 1.5Asλs and As (=1/(μ0aMs) where,

a = Ms/3χo) is a material parameter associated to the initial suscept-
ibility. On contrary to the original work [22], the present model uses
the parameter a instead of χ0. λs is the saturation magnetostriction
coefficient

Eq. (1) describes fully multiaxial configurations. It can further be
simplified for uniaxial stress conditions. If stress is uniaxial and applied
only in the field direction (here x-direction and Ax = A, Ay = 1, and
Az = 1) [22]:

=
+
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Therefore, the analytical function (2) is able to compute the an-
hysteretic magnetization taking into account magneto-elastic couplings
in soft magnetic materials for uniaxial stress conditions.

3.2. Kádár product model

The classical Preisach model computes the irreversible component
of the magnetization process as it uses the concept of hysteron with
rectangular hysteretic characteristics [34]. However, the reversible
component is dominant in the magnetization process at low induction
levels (M and H both approach zero) and at the reversal points of the
loop [36]. If the reversible component is not considered in the model, it
may lead to zero susceptibility in the low induction regions. Such kind
of problems can be avoided by using the product Preisach model which
has been developed by Kádár [35–38]. It is given as [35]:

= +[ ]dM
dH

R M Q h h dh( ) ( , )
H

h

o (3)

Here, β is a reduced Rayleigh constant which represents the initial
relative susceptibility and characterizes the reversible domain wall
motion [39] resulting in linear changes of the magnetization M with the
applied field H. R(M) is a modulating function which modulates shape
of minor loops depending upon their relative average magnetization
[23]. Following the works of Gans and Kádár, a parabolic function is
used for the modulating function. This assumption is equivalent to the
consideration of non-linear modulation applied to total susceptibility.
By analogy to Eq. (3), an analytical hysteresis model has been proposed
recently by the authors in Ref. [23] as:

= +dy
dx

R y df
dx

( )[ ] (4)

Here, y, f, and x represent normalized magnetization, irreversible
magnetization, and magnetic field respectively. In Ref. [23], the hy-
perbolic tangent function was used as the function f in (4). The model
(4) can be reduced to Takács model [24] by choosing β = 0, and R
(y) = 1. Therefore, it is referred to as the hybrid ‘product—T(x)’ model.
The model (4) can also be represented in its inverse form [23]. This
hybrid product model is modified using the multi-scale approach to
consider coupled magneto-elastic behavior of soft magnetic materials in
the following subsection.
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3.3. Magneto-elastic hysteresis model

The relationship derived for the anhysteretic magnetization func-
tion (2) is here further modified and used as one of the terms in the
product model (4) by introduction of a coercive parameter in a manner
analogous to the concept reported in Refs. [24,25]. The irreversible
magnetization in the normalized form for the uni-axial stress case can
be given as:

= = ±
± +

f M
M

A h a
A h a

sinh( )
cosh( ) 2s

n

n

0

0 (5)

Here, f and h represent normalized irreversible magnetization
component and magnetic field, respectively. ao and κn are the normal-
ized values of the coercive parameter and κ, respectively. Normalization
of magnetic field, κ and ao is done with Hmax (maximum magnetic field
or peak values of H waveform). In the above equation + is chosen for
the ascending branch and – is chosen for the descending branch. The
effect of stress in the Rayleigh region has also been reported in the
literature [40,41]. The parameters for Rayleigh law of magnetization
may be affected by the applied stress [42]. Although a more complex
function for stress-dependent Rayleigh constant could be used to im-
prove accuracy, it increases the number of unknown model parameters.
Therefore, we propose to describe the effect of stress on the value of the
Rayleigh constant using a linear relationship:

= +0 1 (6)

Now, the product model can be rewritten as [37,38]:
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Here, m is the normalized magnetization. Integrating Eq. (7) with
the initial (hin, min) and current values (hcur, mcur) of m and h variables,
it becomes:

= +m h ftanh ( )| | |m
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Here, (hcur, mcur) and (hin, min) are the normalized current and initial
values H and M. tanh−1 is the inverse hyperbolic tangent function
which in some computation tools (like Matlab) is represented as atanh.
By substituting f from Eq. (5) into (8), it yields
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Now the kink regions are simulated through the ‘ao’ parameter using
a Gaussian function. Thus the ao parameter is modified as:

= + +( )a a e e1o c
B B b

0
(( )/ )a cur co1 2

(10)

Here, ac0 is the normalized coercive field at zero stress, Bcur-1 is the
magnetic field at the previous instant, Bco is magnetic flux density at
both crossing points, βa is an exponential parameter that defines var-
iation of the normalized coercive field with stress, and b is a Gaussian
function parameter. Since the crossing points and the kink are in-
dependent of stress [13], the values of the parameters in (10) are not
functions of stress. Thus, the modified model (9) can be referred to as
the ‘product-MS’ model which can consider magneto-elastic coupled
behavior of soft magnetic materials. It is worth noting here that the
proposed model (9) is a direct model with the input as H field and the
output as B field. The value of magnetization (mcur) at every time in-
stant can be determined by (9) using values of hcur, hin, min and ao. The
values of hin and min can be chosen as the tip values (hmax and mmax) of
the major loop [23]. These values will remain constant at all time steps.
At the first time step, m and h values are known as hin = hmax = hcur and
min = mmax = mcur and at the second time step, hin (= hmax), min (=
mmax), and hcur are known and the value of ao is computed from (10)
using Bcur-1 which can be determined using m cur-1 and h cur-1 of the
previous time step. The true values of magnetization and magnetic flux
density in physical units can be calculated from

M = Msm (11a)

H= Hmaxh (11b)

B = μ0(H + M) (11c)

Moreover, the model can be used in its original and inverse variants
(considering H as output and B as input to the model) [23]. The inverse
model can be derived using (7) and 11(c) as follow:

=
+

dm
db µ (1 )

dm
dh

dm
dh0 (12)

where dm/dh is given by (7). The model in its inverse form (12) can be
solved numerically [23]. The model also has the ability to consider
multiaxiality (stress tensor in two or three dimensions) as evident in
(1). However, Eqs. (6) and (10) would also need to be modified to take
into account multiaxial configurations. This could be done using the
concept of equivalent stress [43]. In such an approach, a fictitious
uniaxial equivalent stress (since it is a scalar value) is defined from the
multiaxial stress tensor using an equivalence criterion. This uniaxial
stress is assumed to have a similar effect as the actual multiaxial stress.
This concept has for instance been successfully applied to describe the
effects of stress on the magnetic susceptibility of magnetic materials
[44,45], or on the hysteresis losses in iron-silicon steels [46,47]. More
complex, fully multiaxial approaches, could be defined but they would
indeed require replacement of the scalar value describing the stress by a
tensorial expression (for instance using the magneto-elastic energy as a
variable instead of the stress).

4. Results and discussion

Measurements of hysteresis loops are carried out on Fe-Si non-or-
iented material (grade: M235-35A) samples at induction levels (1.0 T
and 1.5 T) with pure sinusoidal flux density at 50 Hz using a single sheet
tester (SST) [20]. Mechanical stresses are applied using pneumatic
tension and compression units of the SST. Modeling is done for quasi-

Fig. 1. Effect of compressive stress (negative values) and tensile stress (positive
values) on measured hysteresis loops of NO material (M235-35) at 1.5 T and
50 Hz.
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static conditions as the frequency-dependence is neglected in this work.
The model parameters (10) are determined using the lsqcurvefit func-
tion in Matlab®, using measured hysteresis loops at two stress levels (0
and ± 30 MPa). It should be noted that positive and negative values of
stress correspond to tensile stress and compressive stress respectively.
Silicon Iron materials have a magnetostriction coefficient of the order of
a few 10−6. The value of λs = 1.5 × 10−6 has been identified to fit the
results for M235-35A within reasonable accuracy [22]. The optimized
parameters are given in Table I.

Comparison of measured and computed hysteresis loops at stress
levels (0 and −30 MPa) is shown in Fig. 2.

The model is then applied to predict hysteresis loops at other
compressive stress levels using the optimized parameters in Table I.
Measured and computed hysteresis loops are shown in Fig. 3.

Similarly, the model parameters for tensile stress (third column of
Table I) are determined by using the two stress levels (0 and 30 MPa).
These model parameters are used to predict hysteresis loops for a ten-
sile stress of 50 MPa. Comparison of computed and measured hysteresis

Fig. 2. Comparison of measured and computed hysteresis loops at 1.5 T under compressive stress of (a) 0 MPa (b) 30 MPa.

Table 1
Model parameters for compressive stress and tensile stress.

Parameter Compressive Tensile

Ms (A/m) 1.35 × 106 1.35 × 106

κ (m/A) 0.0161 0.0185
ac0 0.029 0.029
b (T) 0.01 110
βa (MPa−1) 0.02 3 × 10−4

Bco (T) 0.2 0.2
β0 0.04 0.04
β1 (Pa−1) 8.2 × 10−11 1.5 × 10−15

λs 1.5 × 10−6 1.5 × 10−6

Fig. 3. Comparison of measured and computed hysteresis loops at 1.5 T under compressive stress of (a) −10 MPa (b) −20 MPa (c) −40 MPa (d) −50 MPa.
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loops is given in Fig. 4.
The proposed method has also been applied to predict the hysteresis

loops at lower induction levels (minor loops). A comparison of com-
puted hysteresis loops at 1.0 T for two compressive stress levels with
measured is shown in Fig. 5.

Normalized Root Mean Square (NRMS) % errors for loops at dif-
ferent stress levels are computed using the following equation as:

= ×
=

NRMS Error
M

M M n1 ( ( ) )/ 100
s i

n

1
exp comp

2

(13)

Here, Mexp and Mcomp are the measured and computed magnetiza-
tions, and n is the number of data points on the loop. The maximum %
NRMS error normalized with Ms is not higher than 18% for the con-
sidered stress levels. % NRMS Errors for different stress levels are given
in Table II.

It is interesting to note that the maximum error is at the zero stress
level even though the measured data of the same stress is used for
parameter identification. Moreover, it can also be observed from Table
II that the error decreases as the stress increases. This might be at-
tributed to the highly steep and gooseneck shape of the loops of lower
stress levels. Therefore, inaccuracies may occur due to fitting complex

Table 2
Normalized root mean square error for different stress levels.

Stress (MPa) −50 −30 0 30 50

% NRMS error 15.1 16.5 17.6 15.1 14.2

Fig. 5. Comparison of measured and computed hysteresis loops at 1.0 T under compressive stress of (a) −30 MPa (b) −50 MPa.

Fig. 4. Comparison of measured and computed hysteresis loops at 1.5 T under tensile stress of (a) 30 MPa (b) 50 MPa.

(a)                                                                                                             (b)

Fig. 6. Percentage error in computed losses with number of samples at different induction levels (a) 0 MPa (b) −50 MPa.
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shapes with a rather simplified analytical model. Moreover, an analysis
to assess the effect of sampling on the accuracy of computed results is
also performed to model hysteresis loops with different Bmax values at
different stress levels as shown in Fig. 6 (a)-(b). It can be observed from
the figure that the accuracy of the computed losses increases as the
number of samples increases. The improvement occurs up to a certain
number of samples (200 here) after which no significant improvement
is observed. Despite accurate loss computation, the simulated hysteresis
loop may not be fitted correctly due to kinks in lower induction regions.
The variations in the computed coercive field values with respect to
measured ones are shown in Fig. 7 (a)-(b). It is clearly visible from these
figures that the accurate evaluation of the coercive field and the loop
shape needs a higher number of sampling points at higher stress levels.
Therefore, it is advisable to choose at least 200 samples per cycle for a
precise hysteresis modeling for unstressed conditions and at least 500
points at higher stress levels.

5. Conclusion

This paper is devoted to the development of a simple analytical
magneto-elastic hysteresis model using the multi-scale and Kádár pro-
duct approaches. An analytical function for anhysteretic magnetization
derived from a multi-scale approach is modified in order to consider
irreversible hysteresis effects. The function is then used as the irrever-
sible term in the proposed product model. The influence of compressive
stress on pinning densities is modeled via the coercive field parameter
using a Gaussian function. Stress effects in the Rayleigh region of low
field values are also considered. The model can predict hysteresis loops
in reasonably close agreement with measured hysteresis loops for stress
levels (both compressive and tensile stress). It provides a relatively
simple differential form (9) for the description of complex magneto-
elastic material behavior and also offers easy numerical implementation
in circuit and field analyses. Effect of sampling on the computed loss is
also discussed in the paper. A further improvement in the model is
possible with a detailed study of its reversible component behavior
under applied mechanical stress. Extensions of the proposed model for
taking into account multi-axial stress conditions and frequency-depen-
dence behavior is considered as a part of future research.
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