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The main purpose of homogenization is the determination of the effective behavior �or macroscopic
behavior� of heterogeneous materials. Mean fields per phase are generally used in homogenization
and represent sufficient information in most cases. However, more information about the field
distribution can be necessary, particularly in nonlinear cases. Then, intraphase fluctuations have to
be determined. This paper presents a method, based on homogenization tools, for the determination
of both estimates and bounds for the intraphase fluctuations. The presented applications deal with
magnetic materials and the results obtained with homogenization are compared to those obtained
using a finite element modeling. © 2009 American Institute of Physics. �DOI: 10.1063/1.3152789�

I. INTRODUCTION

The determination of the effective properties of hetero-
geneous materials is a long-standing problem in physics. Un-
less the microstructure is fully described, the effective prop-
erties cannot be exactly determined. Analytical solutions
exist for very simple microstructures. For more complex mi-
crostructures, finite element modeling is sometimes used to
estimate the effective properties.

Homogenization is an alternative modeling approach
that enables the determination of bounds or estimates on the
effective properties from few pieces of information about the
microstructure. Some optimal bounds for the effective prop-
erties have been derived.1,2 Additional information on the
effective property function have been studied by Bergman
and Milton3,4 to define more restrictive bounds. For example,
from the knowledge of the effective properties for a given set
of parameters, improved bounds have been derived by Mil-
ton and by Avellaneda.4,5

In the case of magnetic materials, homogenization en-
ables the determination of the effective permeability �̃ �per-
meability of the equivalent homogeneous medium�, linking
the macroscopic magnetic field H and the macroscopic mag-
netic induction B in the real medium �RM� �see Fig. 1�,

B = �B�x�� = ���x� · H�x�� = �̃ · �H�x�� = �̃ . H , �1�

where ��x� is the local permeability and x the spatial posi-
tion. The operator � · � represents an averaging operation over
the whole volume of the RM ��H�x��=1 /V ·�VH�x� ·dV, with
V the volume of the RM�.

These techniques generally rely on a mean field ap-
proach. Indeed a first homogenization description of the local
behavior can be obtained with the mean field per phase. In
many cases, this piece of information can be sufficient. For
example, in a magnetostriction problem, the local magnetic
field has to be determined in order to define the local strain.
If the constitutive law is linear �piezomagnetic behavior�, the
knowledge of the mean magnetic field is sufficient to deter-
mine the mean strain. But when the constitutive law is non-

linear, then the mean strain is not directly linked to the mean
magnetic field through the constitutive law �see Fig. 2�. This
is the reason why the determination of intraphase fluctua-
tions is necessary.

The study of the second order moments �H�x�2� is a first
approach for the description of field fluctuations. Although
particularly important to study some nonlinear effects, these
fluctuations have been less intensively studied. Axell6 de-
rived bounds for second order moments in two-phase mate-
rials for isotropic composites. Lipton7 derived a lower bound
for nth order moments. Cheng and Torquato8 studied the
field fluctuations in random composites through a finite ele-
ment model. We propose in that paper a method to derive
bounds and estimates for second order moments in the gen-
eral case and in the particular case of isotropic composites.

In the first part, homogenization techniques are pre-
sented. The second part is dedicated to the use of homogeni-
zation tools to determine second order moments. The opti-
mality of the derived bounds is discussed. In the last part, an
application on biphasic composites is studied and the results
obtained with the presented method are compared to the ones
obtained from a finite element modeling. An example about
the use of second order moments in a magnetostriction prob-
lem is finally presented.

II. HOMOGENIZATION

A. Theory

The distribution of the magnetic field in a heterogeneous
material can be obtained by defining a localization operator
A�x� linking the local magnetic field H�x� to the macro-
scopic one H,
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FIG. 1. Homogenization scheme.
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H�x� = A�x� · H . �2�

This localization operator A�x� depends on the position x, on
the local permeability ��x�, and on the microstructure of the
RM. Moreover, since �H�x��=H, it must verify Eq. �3� �with
I the 3�3 identity tensor�,

�A�x�� = I . �3�

Then, combining Eqs. �1�–�3�, the effective permeability �̃
can be written as

�̃ = ���x� · A�x�� . �4�

The homogenization approach classically relies on the deter-
mination of the mean local field per phase Hi. This mean
local field per phase Hi can also be linked to the macroscopic
one H �similarly to Eq. �2��,

Hi = �H�x��i = �A�x� . H�i = �A�x��i · H = Ai · H , �5�

where � · �i represents an averaging operation over the only
phase i and Ai the mean localization operator on phase i.

The effective permeability �̃ can be determined �for a
n-phasic material�,

�̃ = ���x� · A�x�� = �
i=1

n

f i · �i · Ai �6�

since ��x� is constant per phase �considering linear behav-
ior�. f i stands for the volumetric fraction of phase i.

In the particular case of a biphasic material, the localiza-
tion tensors Ai can be conversely retrieved from the effective
permeability �̃ �using Eqs. �3� and �6��,

A1 =
1

f1
��1 − �2�−1 · ��̃ − �2� ,

A2 =
1

f2
��2 − �1�−1 · ��̃ − �1� . �7�

Therefore, in the biphasic case, the mean field per phase can
be estimated �or bounded� from the estimates �or bounds� on
the effective permeability �̃. Many methods can be used to

build these estimates �or bounds�. We made the choice to use
the homogenization techniques based on inclusion problems.

B. Inclusion problems

Homogenization models based on inclusion problems
rely on the hypothesis that the mean field in each phase i is
similar to the corresponding field in a inclusion �with the
same properties �i than in the RM� embedded in a infinite
homogeneous medium with permeability �m.9 Then, a
n-phasic problem can be studied such as n uncorrelated in-
clusion problems �see Fig. 3�.

The basic inclusion problem is defined by �i� an inclu-
sion embedded in an infinite medium and �ii� an uniform
magnetic field H� applied at the infinity.

The inclusion shapes are linked to the distribution of the
corresponding phases in the RM. For example, an isotropic
distribution of one phase in the RM would be modeled by a
spherical inclusion in the inclusion problem. It has to be
noticed that, in the case of an ellipsoidal inclusion, the field
in this inclusion is uniform and can be deduced
analytically.10

For the sake of simplicity, we will focus on that paper on
two dimensional �2D� composites with isotropic constituents
�the permeability tensors can be reduced to scalars�. In that
case, the definition of the effective permeability �̃ is given
by

�̃ =
	 �i

�i + �m



	 1

�i + �m

 . �8�

The choice of the infinite medium permeability �m is a de-
gree of freedom in order to describe the microstructure.
Some particular choices can lead to classical estimates in
homogenization such as the Wiener �W� bounds, the Hashin
and Shtrikman �HS� ones, or the self-consistent �SC�
estimate.9

But homogenization techniques can also provide more
information than estimates or bounds on the effective perme-
ability �̃. Section III presents a method to determine second
order moments of the magnetic field per phase.

III. SECOND ORDER MOMENTS

In a first part, the relation giving the second order mo-
ment of the magnetic field per phase �H�x�2�i is derived. In a
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FIG. 2. �Color online� Field distributions and mean values. In the nonlinear
case, the relationship between ����x�� and �H�x�� is not directly given by
the constitutive law.
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FIG. 3. Principle of homogenization based on inclusion problems.

123913-2 Corcolle, Daniel, and Bouillault J. Appl. Phys. 105, 123913 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



second part, some results are presented on particular micro-
structures for which analytical solutions are known. A
method that enables to determine bounds on the derivative
��̃ /��i, when bounds on the effective permeability �̃ are
given, is then presented. The optimality of these bounds is
discussed.

A. Theory

Homogenization can also be applied to energetic
quantities.4 Equation �9� is verified when uniform boundary
conditions are applied �Tellegen’s theorem�,

�B�x� · H�x�� = �B�x�� · �H�x�� = B · H . �9�

The first member is equal to

�B�x� · H�x�� =
1

V
�

V

��x� · H�x�2 · dV . �10�

Since the permeability is constant per phase, this equation
can be rewritten as

�B�x� · H�x�� = �
i=1

n

f i · �i · �H�x�2�i. �11�

The last member in Eq. �9� can be rewritten with the intro-
duction of the �isotropic� effective permeability �̃,

B · H = ��̃ · H� · H = �̃ · H2. �12�

Finally, Eq. �9� leads to

�̃ · H2 = �
i=1

n

f i · �i · �H�x�2�i. �13�

Considering that the effective applied magnetic field H is a
constant field, the last equation can be differentiated as

��̃ + ��̃� · H2 = �
i=1

n

f i · ��i + ��i� · ��H�x� + �H�x��2�i.

�14�

Moreover, the use of a variational principle indicates that the
second term in the second member of the following equation
is equal to zero:

�15�

since the magnetic field minimizes the energy for a given
configuration �configuration made of permeabilities �i�.
Moreover, the last term in the second member can be ne-
glected �second order term�.

Using Eq. �14� with Eq. �15� gives

��̃ + ��̃� · H2 = �
i=1

n

f i · �i · �H�x�2�i + �
i=1

n

f i · ��i · ��H�x�

+ �H�x��2�i. �16�

The second term in the second member can be simplified
keeping only the first order term and neglecting second and
third order terms,

�
i=1

n

f i · ��i · ��H�x� + �H�x��2�i � �
i=1

n

f · ��i · �H�x�2�i.

�17�

Then, using Eq. �16� with Eqs. �11� and �17� gives the fol-
lowing relation:

��̃ · H2 = �
i=1

n

f i · ��i · �H�x�2�i, �18�

which provides us the following equation to determine the
second order moment of the magnetic field per phase:

�H�x�2�i =
1

f i

��̃

��i
H2. �19�

This relation was derived earlier by Bergman.3

B. Exact solutions

For some particular microstructures, analytical solutions
for the field distribution exist, as well as for the effective
permeability.

The most simple example is the study of laminated com-
posites. The magnetic field H�x� is uniform per phase. The
Wiener bounds are exact estimates for the effective perme-
ability �̃. The first case is obtained when the laminate direc-
tion is parallel to the field, then the magnetic field is uniform
in the whole composite �H�x�=H�. The effective permeabil-
ity is equal to

�̃ = �
i=1

n

f i · �i. �20�

Applying Eq. �19� leads to

�H�x�2�i = H2 = �H�x��i
2, �21�

which is consistent with the fact that the magnetic field is
uniform in the composite.

The second case is obtained when the laminate direction
is perpendicular to the magnetic field, the magnetic induction
is uniform in the whole composite �B�x�=B�. The effective
permeability is given by

1

�̃
= �

i=1

n
f i

�i
. �22�

Applying Eq. �19� leads to

�B�x�2�i = B2 = �B�x��i
2, �23�

which is consistent again.
Another example of microstructure with analytical solu-

tion is the Hashin cylinders �or spheres� assemblage.2,11 The
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composite is made of composite cylinders consisting of an
inner cylinder �phase 2, volumetric fraction f2� embedded in
a concentric outer cylinder �phase 1, volumetric fraction f1

=1− f2�. The whole space is filled with such composite cyl-
inders sized down to the infinitesimally small. In that case,
the magnetic field in phase 2 is uniform. The effective per-
meability is exactly equal to 1 of the Hashin and Shtrikman
bound,

�̃ = �1 ·
�1 − f2��1 + �1 + f2��2

�1 + f2��1 + �1 − f2��2
. �24�

Applying Eq. �19� leads to

�H�x�2�1 =
��2 + �1�2 + f2��2 − �1�2

��1 + f2��1 + �1 − f2��2�2 · H2,

�H�x�2�2 =
4�1

2

��1 + f2��1 + �1 − f2��2�2 · H2 = �H�x��2
2.

�25�

The same relations can be extracted from the analytical field
distribution given in Ref. 11.

C. Bounds on ��̃ /��i

In the general case, the microstructure of materials is not
exactly described, so that exact effective permeability cannot
be given. Estimates can be built but bounds on the effective
permeability can be preferred. Nevertheless, bounds on the
effective permeability �̃ do not provide any information
about the derivative ��̃ /��i. However, more refined bounds
on �̃ can be obtained from an additional piece of information
and will help us to bound the derivative ��̃ /��i. This point is
the object of this section.

Let us suppose that the effective permeability is known
for a given configuration �obtained from experimentation, for
example�. Then, for the same fixed microstructure and
changing the phase properties �permeabilities�, the effective
permeability may vary. From the information on the effective
permeability for this particular configuration, more restric-
tive bounds on the effective permeability �̃ can be obtained
for the same microstructure4 �see Fig. 4�.

For example, some bounds �Wiener ones, Hashin and
Shtrikman ones, etc.� can be determined for a composite if
the phase permeabilities are known as well as the volumetric
fractions f i �an additional assumption could be isotropy�.
But, from an additional information, more restrictive bounds
derived from the previous bounds can be written as the ratio
of two polynomials. The following example is derived from
Wiener bounds with a known value of the function
�̃��1

� ,�2
��= �̃�:

�̃1��1,�2� =
a0�2

2 + a1�2�1

�2 + b1�1
,

�̃2��1,�2� =
a1��2�1 + a2��1

2

�2 + b1��1
, �26�

where the ai and bi coefficients depend on the previous
bounds and on the additional information.4 For example, in

this particular case, the coefficients are determined so that
the effective permeability verifies: �̃�1,1�=1,
��̃ /��1 
�1=�2=1= f1, and �̃��1

� ,�2
��= �̃�.

Until that point, more restrictive bounds have been ob-
tained for the effective permeability �̃ but no information
about the derivative ��̃ /��i is given. The noticeable point in
Fig. 4 is that the new bounds �logically� cross. Then, the
derivative ��̃ /��i is necessarily bounded by the derivatives
of the new bounds at that point. In that way, when bounds are
provided on the effective permeability, it is possible to deter-
mine some bounds on the derivative ��̃ /��i by scanning the
full scale of possible values for �̃ and take these values for
the additional information. Then, bounds for the derivative
��̃ /��i are obtained for each possible value of �̃. The opti-
mality of such bounds will be discussed in the next para-
graph.

D. Optimality

The optimality of the bounds on the derivative ��̃ /��i

obtained from the proposed method is proven by the defini-
tion of a microstructure attaining these bounds. The bounds
on the derivative ��̃ /��i obtained from the Wiener bounds
on the effective permeability �̃ are attained for the confocal-
ellipsoid assemblage defined in Ref. 7.

In the case of 2D isotropic composites, an additional
property of the effective permeability can be used, known as
the Keller’s relation,12

�̃��1,�2� · �̃��2,�1� = �1 · �2. �27�

Then, using this additional information for isotropic 2D com-
posites, bounds on the derivative ��̃ /��i obtained from the
Hashin and Shtrikman bounds on the effective permeability
�̃ are attained for the composite consisting of densely
packed, doubly coated circular cylinders defined in Ref. 13.

Unfortunately, for isotropic three dimensional �3D� com-
posites, the Keller relation does not apply since some 3D

µ̃ µ1

Phase contrast µ2 1

Upper bound

Lower bound

Range of possible
values for µ̃

More restrictive
bounds

Additional
information

/

/

FIG. 4. More restrictive bounds from an additional information about �̃.
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isotropic composites have been shown not to respect Keller’s
relation.14 The relation becomes an inequality,

�̃��1,�2� · �̃��2,�1� � �1 · �2. �28�

Figures 5 and 6 present the derivative ��̃ /��i as the
function of the effective permeability �̃. The phase proper-
ties are �1=20, �2=1, and f1=0.6.

The corresponding microstructures attaining the bounds
are also presented in the figures. These microstructures show
a continuous way to transform, for a given composition, a
“lower Wiener” microstructure into an “upper Wiener” one

passing through Hashin and Shtrikman microstructures, us-
ing confocal-ellipsoid assemblage �Fig. 5�. Such a transfor-
mation can also be performed for isotropic composites using
doubly coated circular cylinders �Fig. 6�. These continuous
transformations could also be applied, for a given effective
permeability, with a variation of volumetric fraction f1. A
similar proposal, using an assemblage of two types of Hashin
spheres, has been made by Gilormini15 for the effective bulk
modulus and conductivity of isotropic two-phase composite.

IV. RESULTS

In order to validate the presented method, results are
compared to the ones obtained from a finite element model-
ing. The modeled materials are 2D biphasic magnetic mate-
rials with a phase contrast �2 /�1 equal to 5. The finite ele-
ment modeling models different types of microstructures
�phase 1/phase 2�: �i� type I: inclusions/matrix and matrix/
inclusions �Fig. 7�a��; �ii� type II: mosaic microstructure
�Fig. 7�b��.

For these two types of microstructure, the finite element
modeling has been realized for a large number of random
microstructures �500 per volumetric fraction and per micro-
structure type, random position and radius for the disks in the
first type, and random allocation of the phases in the second
type�.

A. Effective permeability

Figure 8 shows the results obtained from homogeniza-
tion and finite element modeling about the effective perme-
ability �̃ as a function of the volumetric fraction f1 of phase
1.

Results for the mosaic microstructure are presented with
error bars because the variability of the effective permeabil-
ity �̃ is quite important. On the opposite, results for the
matrix/inclusions �and inclusions/matrix� are presented with
points representing the mean value of the different computa-
tions because the variability of the effective permeability �̃
is very low for this type of microstructure.

Classical estimates in homogenization are presented too.
The Wiener bounds are obtained by choosing �m=0 and
�m→� in the inclusion problems. The more restrictive HS
bounds for isotropic composites are obtained by choosing
�m=�1 and �m=�2 in the inclusion problems. The SC esti-
mate can be a relevant estimate for microstructures where
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FIG. 5. Bounds on the derivative ��̃ /��1 as a function of the effective
permeability �̃ in the general case and in the case of 2D isotropic compos-
ites. The bounds are optimal since they are attained for some particular
microstructures.
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FIG. 7. Microstructures modeled with the finite element method.
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none of the phase plays a particular role. They are obtained
by choosing �m= �̃ in the inclusion problems, leading to an
iterative computation.

As expected, the finite element results are bounded by
the Wiener bounds. Since the studied finite element micro-
structures can be considered isotropic, HS estimates should
be bounds for the finite element results. A very few number
of computations do not remain between these bounds, the
isotropy of the corresponding microstructures may not be
verified. In the following, the HS estimates will be consid-
ered as bounds. The first comment about Fig. 8 is that the
effective permeability for the matrix/inclusions �and also
inclusions/matrix� microstructures is quite close to the HS
bounds. The HS bounds seem to be appropriate to give a
quite accurate estimate for matrix/inclusion problems. The
second comment is that the variability for the mosaic micro-
structure is quite high but the mean value for the effective
permeability seems to be correctly estimated by the self-
consistent estimate. This estimate seems well suited to this
type of microstructure.

B. Derivatives of the effective permeability

Figure 9 shows the derivative of the effective permeabil-
ity ��̃ /��1 �determined in the finite element modeling by
computing the value f1�H�x�2�1 /H2 according to Eq. �19�� as
a function of the volumetric fraction f1 of phase 1 for a given
phase contrast �2 /�1 equal to 5. Figure 10 presents the same
results for a contrast equal to 100. The homogenization re-
sults are given with two types of estimates: �i� estimates of
��̃ /��1 obtained directly by deriving the estimates of �̃ �W
and HS bounds, SC estimate�, �ii� and bounds on ��̃ /��1

obtained by scanning the range of possible values of �̃ �ac-
cording to the bounds on the effective permeability �̃, see
Fig. 8� and taking the minimum and maximum values of the
derivative computed from Eq. �26� according to the method
described in Sec. III C.

In one hand, these results illustrate that the derivatives of
the previous effective permeability bounds cannot be consid-
ered as bounds on the derivative ��̃ /��1. Some finite ele-
ment results bypass these estimates �for example, some finite
element results for the type I microstructures bypass the de-
rivative ��̃ /��1 of the W bound�.

On the other hand, the finite element results for the type
II microstructure seem to fit with the SC estimate �derivative
of the SC estimate of �̃�. For type I microstructures, the
results are close to the bounds for isotropic composites for
the contrast 5, whereas it is not really the case with the
contrast 100 �at least, for the upper bound�. This is due to the
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fact that the maximum value for ��̃ /��1 �depending on �̃� is
quite high compared to its value when taking �̃ equal to the
HS limit. This point appears clearly in Fig. 6.

It also appears in these figures, that in the case of a type
I microstructure, the differentiation of HS estimate provides
a satisfying approximation of the second order moment.

It must be noticed that the lower bounds for ��̃ /��1

�both in the general case and isotropic composites� are ex-
actly equal to the derivatives of the Wiener and Hashin and
Shtrikman for �̃ �in that example with contrast �2 /�1 higher
than 1, it is equal to the derivatives of the upper bounds�.

The bounds for the derivative ��̃ /��1, for a given volu-
metric fraction f1, are large due to the loss of the estimation
of �̃.

C. Variance

It is convenient to present the evolution of the variance
as a function of �̃. The variance of the magnetic field in
phase i is defined as

Vi
H =

�H�x�2�i − �H�x��i
2

�H�x��i
2 . �29�

Figure 11 shows the variance of the magnetic field in phase 1
as a function of the effective permeability �̃ in the particular
case of a volumetric fraction of phase 1 equal to f1=0.5 and
contrast �2 /�1=5. Figure 12 is the variance of the magnetic
field in phase 2 with contrast �2 /�1=100 �volumetric frac-
tion is still f1=0.5�. The end points A and B, respectively,
correspond to the lower and upper Wiener bounds on the
effective permeability, and the variance of the magnetic field
�in both phases� is equal to zero in these cases. The end
points C and D, respectively, correspond to the lower and
upper HS bounds on the effective permeability; only one of
the phases presents a zero variance for the magnetic field in
these cases.

The value �H�x�2�i is computed from Eqs. �19� and �26�
and the value �H�x��i

2 is computed from Eq. �7�.
These figures �particularly Fig. 12� show that taking

minimum and maximum values for the derivative ��̃ /��i

when scanning the range of possible values of �̃ is not judi-
cious if the information about �̃ is known, since this infor-
mation is lost. The corresponding bounds would be rect-
angles on these figures. It would be preferable to present
bounds as a function of the volumetric fraction f and of the
effective permeability �̃; but this kind of 3D curves cannot
be presented easily.

The finite element results for type I microstructures
show a low variability in variance and effective permeability.
Moreover, the results are very close to the C and D end
points, corresponding to HS estimates for the effective per-
meability and the use of the derivative ��̃ /��1 of the HS
bounds for the determination of the second order moment
�H�x�2�1. The SC estimate also seems to be a good estimate
for type II microstructure.

D. Application

An example of application is presented in this paragraph.
It deals with magnetostriction, including the nonlinear rela-
tionship between the magnetic field and the magnetostrictive
strain. A classical model16 gives the magnetostrictive strain
���x� as a function of the magnetic induction B�x�,

���x� = � · �1 0 0

0 − 1/2 0

0 0 − 1/2
� · B�x�2 = �= · B�x�2. �30�

Let us study a composite made of two magnetostrictive
phases. The two phases have different permeabilities �i and
different magnetostriction coefficients �i. Then, the macro-
scopic magnetostrictive strain �� can be deduced from the
magnetic state in the composite �the composite is supposed
to be elastically homogeneous�,
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FIG. 11. Variance of the magnetic field H�x� in phase 1 as a function of the
effective permeability �̃, contrast �2 /�1=5 �see legend in Fig. 12�.
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FIG. 12. Variance of the magnetic field H�x� in phase 2 as a function of the
effective permeability �̃, contrast �2 /�1=100.
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�� = ����x�� = f1 · �1 · �B�x�2�1 + f2 · �2 · �B�x�2�2. �31�

A classical approximation is the mean field approach, which
assimilates the second order moments as the square of the
first order moments �H�x�2�i→ �H�x��i

2, which is generally
wrong �underestimation of the second order moment�.

A better estimate can be obtained with the determination
of second order moments. These second order moments can
be computed from Eq. �19� and �B�x�2�i=�i

2 · �H�x�2�i.
Figure 13 presents the macroscopic magnetostrictive

strain �� as a function of the macroscopic magnetic induction
B for the two phases and an estimate for the composite. The
phase properties are �1 /�2=15, �1=24�10−4, �2=3
�10−4, and f1=0.7. We can see on this figure that approxi-
mating the second order moments as squares of first order
moments underestimates the macroscopic strain for about
25% in this example. By the way, it is interesting to notice
that the composite presents a higher magnetostriction than
each of the two constituents �because of the concavity of the
constitutive law �Eq. �30��.

V. CONCLUSION

Homogenization techniques can provide estimates or
bounds for the effective behavior of composite materials
with very low computational cost compared to the finite el-
ement method. In addition to mean field per phase, it can
also provide estimates or bounds on the intraphase fluctua-
tions. Such information can be decisive in the case of non-
linear behavior. In the example dealing with a magnetostric-
tion model presented in this paper, the magnetostrictive
strain can be about 25% underestimated when using only
mean field approach, compared to the case introducing field
fluctuations.

We presented in this paper a method to determine the
intraphase fluctuations in heterogeneous materials using ho-
mogenization tools. The results have been compared to those
obtained from a finite element modeling. It has been shown
that the self-consistent estimate provides a satisfying ap-
proximation of both mean field and second order moment,
for mosaic microstructure, where none of the phase plays a
specific role. In the case of matrix/inclusion microstructure,
the Hashin and Shtrikman estimate is well suited for both
mean field and second order moment. If bounds rather than
estimates are needed, we defined optimal bounds for the sec-
ond order moments in the general case and more restrictive
ones in the particular case of isotropic 2D composites.
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FIG. 13. Macroscopic magnetostrictive strain �� as a function of the mac-
roscopic magnetic induction B.
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