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Giant magnetostriction materials, such as Terfenol-D, have allowed the development of a new class of actuators and sensors based
on magnetoelastic properties. However, their mechanical properties are a limiting factor for some applications. Composites, made of
Terfenol-D particles in a matrix, can bypass these limitations, improving the overall mechanical properties while maintaining the mag-
netostriction effect. But, to optimize the design of magnetostrictive composites, advanced modeling tools are needed. This paper proposes
a homogenization model based on inclusion problems. It compares modeling results to experimental data from the literature, and it il-
lustrates the use of the model as a tool for optimal design.

Index Terms—Composite, effective properties, homogenization, inclusion, magnetostriction, Terfenol-D.

I. INTRODUCTION

FOR a number of years, magnetostrictive composites have
received much attention through sensor or actuator studies.

Because of its giant magnetostriction, Terfenol-D particularly
fits such uses. But applications are limited by its cost and brit-
tleness. In order to improve mechanical properties, the use of a
matrix with Terfenol-D particles gives a magnetostrictive com-
posite with still intermediate magnetostriction [1]. These mate-
rials are well suited to high-frequency applications. In that con-
text, there is a need for modeling tools to link the effective be-
havior of these composites to their composition. Many factors
influence the effective properties among which volumetric frac-
tion of Terfenol-D and mechanical properties of the matrix are
very sensitive. Modeling tools can lead to the definition of op-
timal composition for such composites, adapted to the require-
ments for the final actuator or sensor.

A possibility would be the use of finite-element modeling
to predict composites behavior. The limitation of such an ap-
proach is that a finite-element calculation requires the complete
knowledge of the microstructure and is valid only for that partic-
ular microstructure. In that paper, we propose a semianalytical
model for the prediction of the effective behavior of composites,
using some basic and limited statistical information about the
microstructure. Such strategies based on homogenization theory
have been developed over recent years.

Herbst et al. developed a single sphere model [2]. This model
is limited to only one single magnetostrictive phase and ap-
peared to be nearly insensitive to material constants [3], [4].
Zhou et al. developed another model [5] but still limited to one
single magnetostrictive phase and nonapplicable for nonlinear
magnetic behaviors. Nan et al. proposed a more rigorous, but
also more complicated, model based on Green’s functions cal-
culation [3], [4]. Another model has been proposed by Feng et
al., based on the double-inclusion method [6] but the improve-
ment compared to the simple inclusion one seems to be weak.

The model presented in this paper is based on basic inclu-
sion problems. Its use is not limited to one single magnetostric-
tive phase but can be applied to -phase composites. Moreover,
nonlinear magnetic behavior of magnetostrictive phases can be
taken into account. The magnetostriction strain of Terfenol-D
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particles is deduced from the macroscopic applied magnetic
field. From the magnetostriction strain of Terfenol-D, macro-
scopic strain/stress of the composite can be deduced analyti-
cally. In the first part, the principle of the homogenization model
is presented. The application to a biphasic composite is detailed
in the second part. The results are compared to experimental
data from the literature. The third part is dedicated to the use
of the model as a tool for optimal design of magnetostrictive
composites.

II. HOMOGENIZATION

A. Principle

Homogenization purpose is the determination of effective
properties of heterogeneous materials. The objective is to de-
duce the material properties of a fictive homogeneous material
equivalent to the real heterogeneous one from the properties of
its constituents and some assumptions about the microstructure.

We consider an -phasic material with phases .
The material properties of phase are the magnetic permeability
second-order tensor and the elastic stiffness fourth-order

tensor . The mean magnetic induction, magnetic field, stress,
and strain tensors in phase are noted respectively , , ,

. The magnetic and mechanical constitutive laws are written
(using Einstein’s summation convention) according to (1) and
(2)

i.e., (1)

i.e., (2)

The effective permeability tensor of the composite is de-
fined according to (3)1

(3)

with and .
In a similar way, the effective stiffness tensor of the composite
is defined according to (4):

(4)

with and .

1h:i denotes an averaging operation over the volume.
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Fig. 1. Principle of inclusion based models.

The basic inclusion problem allows the definition of many
homogenization models [7], both in mechanics and magnetics.

B. Homogenization Models Based on Inclusion Problems

Inclusion based models rely on the hypothesis that mean
fields in each phase are similar to corresponding fields of
an inclusion of phase embedded in an infinite homogeneous
medium with magnetic property or mechanical property

(Fig. 1). The infinite medium is usually taken isotropic,
both from a magnetic [8] and a mechanical [7] point of view

(5)

(6)

with , , and respectively the magnetic permeability,
bulk modulus, and shear modulus of the infinite medium; the
Kronecker symbol; and are normed basis tensors:

, .
When the phase distribution in the composite is isotropic, the
shape of the inclusion in the basic inclusion problem is spher-
ical. It has to be noticed that the shape of the inclusion is related
to the phase distribution and by no mean to the shape of the par-
ticles in the real composite.

The -phasic material state can be deduced from the solution
of inclusion problems. This is the reason why the knowledge
of the solution to the basic inclusion problem is required.

C. Basic Inclusion Problem

The basic inclusion problem is defined with:
• an inclusion embedded in an infinite medium;
• a uniform applied loading or at the infinity.

Then, in the case of linear behavior for both media (inclusion
and infinite medium ) and an ellipsoidal shape for the inclu-
sion, the field in the inclusion is uniform. This is the reason why
homogenization models based on inclusion problems fit well
with mean field homogenization theory.

For example, in the case of a spherical inclusion and isotropic
linear behavior,2 the magnetic field in the inclusion can be given
analytically [9], [10]

(7)

2For an ellipsoidal shape and anisotropic linear behavior, details can be found
in [9].

Similarly, the strain in the inclusion can be deduced [7]

(8)

with the Hill constraint tensor (representing the influence
of the infinite medium on inclusion strain), as a function of the
stiffness tensors and the shape of the inclusion. In the case of
a spherical inclusion, only depends on the properties of the
infinite medium

(9)

Basic inclusion problems can be solved with (7) and (8). But,
the definition of the inclusion problems from the -phase
composite have to be detailed.

D. Choice of Infinite Medium Loading and Properties

The applied loading in each inclusion problem is usually dif-
ferent from the macroscopic applied loading on the real com-
posite. Indeed it must be verified that the mean magnetic field
(resp. strain) over the inclusions is equal to the mean magnetic
field (resp. strain ) in the composite.

Then, the applied loading can be different for each inclusion
problem but the same applied loading ( and ) for every
inclusion problems is often chosen for simplicity reasons.

The last thing to specify is the choice of the infinite medium
properties. From this choice, the field estimates will vary con-
siderably. But some specific choices enable the recovery of clas-
sical estimates in linear homogenization of biphasic materials
such as Wiener bounds, Hashin & Shtrikman bounds, and self-
consistent estimate [9].

The next section proposes an application of the proposed ap-
proach in the case of a biphasic composite.

III. MAGNETOSTRICTIVE BIPHASIC COMPOSITE

The magnetostrictive biphasic composite consists of magne-
tostrictive particles embedded in a nonmagnetostrictive matrix.
In this paper, we will only consider isotropic behavior (meaning
that material constants are the three following scalars: is the
permeability, is the bulk modulus, and is the shear modulus)
for both phases. The description of the microstructure is limited
to the following information: volumetric fractions and isotropic
distribution of magnetostrictive particles. The magnetostrictive
volumetric fraction is (and so the matrix one is ).

The magnetostrictive effect only takes place in magnetostric-
tive particles and the magnetostriction strain is assumed, as a
first approximation, to be stress independent. This latter as-
sumption is not general—the magnetostriction strain is known
to strongly depend on stress (see for instance [11]). But, in
the particular case of Terfenol-D, beyond a stress value (a few
MPa), Terfenol-D magnetostriction is nearly stress-independent
when plotted as a function of the magnetic induction (see for
instance [12]). This is the reason why this hypothesis is often
considered.
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Fig. 2. Solving scheme for the proposed model.

The objective of the model is to link the macroscopic me-
chanical response to the applied macroscopic magnetic field.
The solving scheme is presented in Fig. 2.

A. Magnetic Calculation

The first objective is to determine the mean magnetic field
in magnetostrictive particles. For that purpose, the composite is
reinterpreted in terms of two inclusion problems:

• a sphere representing the magnetostrictive phase ( ) be-
havior embedded in an infinite medium;

• a sphere representing the matrix ( ) behavior embedded
in the same infinite medium.

The infinite medium properties are chosen in order to compute
one Hashin & Shtrikman estimate: the infinite medium perme-
ability is equal to the matrix one .

The first inclusion problem equation is similar to (7) if linear
magnetic behavior is considered:

(10)

The second inclusion problem is homogeneous, leading to the
following equation:

(11)

The following condition must be verified, , so that

(12)

Fig. 3. Experimental magnetization curve for Terfenol-D [13] (no applied
stress).

Developing the last three equations gives the mean magnetic
field of the magnetostrictive particles , as a function of the
macroscopic applied magnetic field

(13)

This last equation is true for linear magnetic properties. Un-
fortunately, magnetostrictive materials usually have a strongly
nonlinear and hysteretic magnetic behavior. Fig. 3 presents an
experimental magnetization curve for Terfenol-D [13].

Nonlinearity is usually complex to solve. But the presented
method enables the computation of the mean magnetic field in
the magnetostrictive particles with no further complexity. In-
deed in the inclusion/matrix problem, the magnetic field is still
uniform in the inclusion, even if the inclusion behavior is non-
linear. The sole difficulty is to solve the following equation (with
nonconstant permeability):

(14)

The mean magnetic field of magnetostrictive particles can be
computed with an iterative scheme.

The second objective is to determine the mean magnetostric-
tion strain of magnetostrictive particles from the previous
local mean magnetic field. The magnetostriction strain is
usually considered isovolumetric [14]. In such conditions, the
magnetostriction strain tensor for isotropic materials (such as
Terfenol-D) is given by (15) (assuming that the macroscopic
applied magnetic field is along axis 1)

(15)

This strain is considered as an eigenstrain in the mechanical
problem, meaning the strain that would appear in the absence of
the surrounding matrix. Either analytical models can be used.
A classical model is the piezomagnetic one: .
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Fig. 4. Experimental magnetostriction curve for Terfenol-D [13] (no applied
stress).

Some authors propose a more refined model for magnetostric-
tion strain (see for example [12], [15], [16]), with better agree-
ment to experimental data

(16)

Either experimental data are available (see Fig. 4), this solution
would lead to the most accurate model.

The next step is then the calculation of the macroscopic me-
chanical state depending on the magnetostriction strain.

B. Mechanical Calculation

The mechanical homogenization step in this problem is
slightly different from the one presented in Section II because
the loading is not the macroscopic external one in that case but
the local eigenstrain previously computed.

Strain is broken up into two terms: where is the
total strain, the purely elastic strain, and the magnetostric-
tive strain. Macroscopically, the same kind of relation exists:

. But these quantities are not simply linked in the
general case: but and . Indeed,
the macroscopic magnetostriction strain can be computed [17]:

(17)

with the localization tensor3 linking local stress to macro-
scopic stress . This tensor is equal to

(18)

with the effective stiffness tensor depending on the choice of
the infinite medium. Since the matrix is nonmagnetostrictive

(19)

3The index denotes a transposition operation on .

Several estimates for the effective stiffness tensor can be
chosen [7]. The most usual choices are the dilute model (also
called Eshelby model), the Hashin & Shtrikman model, or the
Mori-Tanaka model. In the studied case, analytical expression
can be found for these estimates. We will focus in that paper on
the Hashin & Shtrikman estimate where the infinite medium is
chosen with the same properties as the matrix of the composite.
In that case, the effective tensor is given by (20)

(20)
If the composite is not constrained on its border, the macro-

scopic stress free strain has an analytical expression given by
(21)

(21)

where

(22)

C. Application on Terfenol-D Composites

Let us first consider a Terfenol-D/glass composite. The model
enables the computation of macroscopic stress free strain of the
composite from an applied macroscopic magnetic field. The fol-
lowing application consists in the computation of the composite
stress free strain for different macroscopic applied fields and dif-
ferent Terfenol-D volumetric fractions.

The mean magnetic field in Terfenol-D particles is computed
(in the nonlinear case, the magnetization curve is required, an-
hysteretic curves are used for Terfenol-D). The composite mag-
netization curve can also be deduced (Fig. 5).

Then, the magnetostriction response of pure Terfenol-D has
to be determined. Either from experimental data giving the mag-
netization curve (Fig. 3) and the coefficient ( for
Terfenol-D according to [12]), either directly from experimental
data on magnetostriction (Fig. 4). This latter choice has been
made for the applications in that paper. Finally, the stress-free
strain can be computed for different applied fields and volu-
metric fractions (Fig. 6).

These results can be compared to experimental ones given in
[18] and used in [5]. Qualitatively, results show a good agree-
ment with experiment but quantitatively, there is a significant
difference. This difference comes from the magnetostriction re-
sponse of pure Terfenol-D: Zhou et al. deduced the pure Ter-
fenol-D response from experimental data on a 60% Terfenol-D
composite, whereas we only used properties from the different
constituents. Moreover, the level of applied magnetic field in
this publication appears to be very high compared to usual ex-
perimental levels. Anyway, if we use the Terfenol-D magne-
tostriction curve proposed by Zhou et al., the agreement be-
tween experimental and modeling results becomes very good
(Fig. 7).

The model can also be applied to Terfenol-D/Epoxy compos-
ites. In most cases, these composites are made of ori-
ented particles of Terfenol-D. The behavior of such particles
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Fig. 5. Anhysteretic magnetization curve of the Terfenol-D/glass composite for
different volumetric fractions. Modeling results.

Fig. 6. Macroscopic stress free strain of the Terfenol-D/glass composite for
different volumetric fractions. Modeling results.

Fig. 7. Experimental (symbols) and modeling (lines) results for the Terfenol-D/
glass composite using the magnetostriction response proposed in [5] for dif-
ferent volumetric fractions.

is close to the behavior of single crystals. Magnetization
and magnetostriction measurements on Terfenol-D single crys-

Fig. 8. Macroscopic stress free strain of the Terfenol-D/Epoxy composite for
different volumetric fractions. Modeling results.

Fig. 9. Macroscopic stress free strain of a 10% Terfenol-D composite for dif-
ferent matrices. Modeling results.

tals have been reported in [19]. These results have been used
for the modeling. The effect of the volumetric fraction of Ter-
fenol-D is plotted in Fig. 8.

These results are in good qualitative agreement with the
experimental results reported by Anjanappa and Wu [20],
revealing an increase of the magnetostriction strain with the
volumetric fraction. But they strongly differ from the experi-
mental results from Duenas and Carman [21]. They report a
nonmonotonous effect of the volumetric fraction on the magne-
tostriction amplitude: the maximum amplitude is higher for a
20% composite than for a 30% one. The proposed model cannot
capture such an effect. However, the reason for such an effect
would have to be clearly identified to be modeled. The effect of
residual stresses arising from the manufacturing process is an
hypothesis in the particular case reported in this reference.

The effect of the matrix properties can also be investigated.
The estimated response of a 10% Terfenol-D composite with
different materials for the matrix is presented in Fig. 9. The ma-
terial properties used are given in Table I. The results fit well the
experimental results reported in [18] and plotted in Fig. 10.

IV. OPTIMAL DESIGN OF MAGNETOSTRICTIVE COMPOSITE

Until that point, composites have been considered uncon-
strained. This hypothesis is an extreme case. In most practical



22 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 1, JANUARY 2008

TABLE I
MATERIAL YOUNG MODULUS [18]

Fig. 10. Macroscopic stress free strain of a 10% Terfenol-D composite for dif-
ferent matrices. Experimental results [18].

cases, the stress is not zero. One other extreme case is the one
where the composite cannot deform. Then, the blocked stress
(compression) can be deduced. The actual behavior stands be-
tween these two cases (the unconstrained strain and the blocked
stress). In the present model, the behavior can be represented
with a straight line (going through the previous two points) since
we consider a linear mechanical behavior and a stress-indepen-
dent magnetic state. Then, an analytical model can be given for
the characteristic curve of the composite. The operating point
can be deduced from the crossing between this characteristic
curve and the loading application one. Fig. 11 shows an example
of application for which the loading curve is linear. The inter-
section point is the actual operating point.

The need for optimal design for magnetostrictive composites
can be pointed out with the sensitivity of some parameters such
as magnetostrictive phase volumetric fraction or matrix stiff-
ness. It can be noticed in (21) that composite strain or stress are
proportional to the magnetostriction strain of Terfenol-D par-
ticles. As a consequence, in the following figures, a modified
applied field would not change the shape of the curves but only
the axes values. For a given set of parameters (volumetric frac-
tion, matrix shear and bulk modulus—or Young modulus and
Poisson ratio—and applied field), the behavior of the composite
is shown in Fig. 11.

For the same volumetric fraction, let us consider different
Young modulus values for the matrix. The corresponding char-
acteristic curves are presented in Fig. 12, defining the envelope
of the reachable behaviors. This figure points out the fact that
any point (depending on the application) under the limit curve
can be reached with the good choice of the matrix Young mod-
ulus for a given volumetric fraction. This limit curve gives the
optimum operating points for the composite actuator. Using that

Fig. 11. Macroscopic strain versus macroscopic stress (compression) for one
set of parameters.

Fig. 12. Macroscopic strain versus macroscopic stress for different matrix
Young modulus (from 5 to 200 GPa), f = 10% andH = 100 kA/m.

curve, the best use of the composite can be deduced. The volu-
metric fraction effect can also be shown in Fig. 13.

Magnetostrictive phase volumetric fraction can be optimized,
for example if the maximum attainable magnetic field is given.
In order to design cheaper composites, the minimum magne-
tostrictive phase volumetric fraction can be found with the help
of Fig. 13. The effect of the matrix Poisson ratio can also be
shown but it is a lot less sensitive than volumetric fraction and
Young modulus.

These results point out the effect of the parameters related
to the composition and microstructure on the overall composite
behavior. With the knowledge of the application and the ap-
plied load range (magnetic and mechanical) on the actuator, the
choice of the matrix properties and volumetric fractions can be
considerably optimized.

V. CONCLUSION

The behavior of magnetostrictive composites has been mod-
eled through homogenization tools from both a magnetic and a
mechanical point of view. The use of this model can lead to the
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Fig. 13. Optimum operating curves for the same previous Terfenol-D volu-
metric fractions,H = 100 kA/m.

optimization of composites behavior. Sensitivity to volumetric
fractions of the magnetostrictive phase or to Young modulus of
the matrix have been presented and really affect the composite
properties. Results have been presented for biphasic composites
with one magnetostrictive phase (for which experimental data
are available) but this model can apply to the study of compos-
ites with several magnetostrictive phases without any change in
the presented method.

Moreover, this model takes into account the nonlinear mag-
netic behavior of magnetostrictive phases. Indeed the evaluation
of the local magnetic field in magnetostrictive particles highly
depends on it and is a key point. Other models often consider
linear magnetic behavior, implying an error on local magnetic
field evaluation and as a consequence, an error on eigenstrain
evaluation.

One limitation of this model is the fact that the magnetostric-
tion of magnetostrictive particles is just magnetic field depen-
dent. In practical cases, it is also known to be stress dependent.
Thus, the model can be used to get optimal composition of a
composite, but is not able to catch second-order effects such as
the effect of residual stress due to thermal treatments. The in-
troduction of stress in the magnetostrictive constitutive law is
currently a work in progress. This improvement could be based
on recent works on magneto-mechanical behavior modeling in-
cluding the multiaxiality of stress [22].

This model is nevertheless a fast and useful tool for the first
step design of composition and microstructure of magnetostric-
tive composites.
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