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C. Babori c,d, A. Brézard-Oudot c, L. Daniel c,d, S.T. Misture e, A. Pramanick a,1,*

a Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, PR China
b Neutrons Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
c Group of Electrical and Electronic Engineers, Paris, University Paris-Saclay, Gif-sur-Yvette, France
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A B S T R A C T

Materials with antipolar-polar transformation are attractive for their large functional responses. However, the
antipolar state remains controversial in many materials. For example, recent studies on archetypical antiferro-
electric (AFE) materials indicate an incomplete compensation of antiparallel dipoles, which prompted their
alternative definition as ferrielectric. Here, we investigated the origin of the ferrielectric (FIE) state in a classical
AFE material using X-ray and neutron total scattering. We show that the FIE state arises from 3-dimensional
modulation of the cation-centric electric dipoles, which can be viewed as periodic arrangement of 180◦ twin
boundaries with non-Ising characteristics.

Materials that undergo antipolar to polar phase transitions exhibit
large electric-field-induced changes in their surface charges and/or
strain, which make them attractive for high/pulse power capacitors,
high-strain electromechanical actuators and solid-state cooling appli-
cations [1-4]. Antiferroelectrics (AFE) are one class of archetypical
antipolar materials. In the classical view, the electric dipoles in AFE are
arranged in an antiparallel fashion within centrosymmetric unit cells
[5], which leads to a net zero macroscopic polarization. However, under
large applied electric-fields, the antiparallel dipoles can align parallel to
each other, thereby constituting a transition to polar ferroelectric (FE)
phase [6]. Upon removal of the electric-field, the dipoles revert back to
their original antiparallel arrangement [7,8]. Although the classical
model could phenomenologically describe the double polarization vs
electric-field (P-E) hysteresis loop of AFEs [8,9], it has been challenged
by recent observations of a non-zero remanent polarization in some
well-know AFE materials, such as PbZrO3 [10-13]. Instead, based on
electron microscopy studies, it was proposed that many of the classical
AFEs may indeed be ferrielectric, which implies that the antiparallel
dipole moments do not exactly cancel each other [10,11,14,15].
Nevertheless, the atomistic model of an ferrielectric (FIE) state remains

unresolved. For example, it is unclear why the cation-centric dipoles
should vary significantly across the different layers in a ferrielectric
structure, given their similar chemical environments or what factors
drive continuous rotation of polarization vector even in presence of
strong dipole-dipole interactions.

To address these issues, herein, we investigated the structural state of
a classic AFE AgNbO3 (AGN), which is attractive for energy storage
devices due to their characteristic double-loop polarization hysteresis
and high breakdown strength [16-18]. Indeed, the exact polar state of
AGN is controversial. In 1958, Francombe and Lewis reported a small
remanent polarization for AGN at room temperature, which confounded
them about whether to define AGN as ferroelectric or antiferroelectric
[19]. Recently, other researchers also verified the existence of weak
ferroelectricity in AGN [20-22]. However, the crystal structure of AGN is
considered to have a centrosymmetric Pbcm space group, which pre-
cludes any spontaneous polarization [23-26]. Recently, Yashima et al.,
using a combination of convergent beam electron diffraction (CBED)
and neutron powder diffraction (NPD), modeled the room temperature
average phase (M1 structure) of AGN with orthorhombic polar Pmc21
space group [27], which was able to describe the weak polarization in
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AGN based on antiparallel displacements of Ag+, Nb5+, and O2- ions
with unequal magnitudes. This was also verified by measurement of
large remanent polarization [28] and non-linear optical properties at
low temperatures [29], and later substantiated by Farid et al. [30]..
Interestingly, Gao et al. proposed the existence of a ferrielectric polar
symmetry (Pmc21) at the short-range (1.5 – 15 Å) and a centrosymmetric
symmetry (Pbcm) at the long-range (15 – 40 Å) length scale [31,32],
although the underlying structural rationale for ferrielectricity was not
explained. It is noteworthy that local structural probes, such as nuclear
magnetic resonance (NMR) [15] and Pair Distribution Function (PDF)
[25,32], have indicated non-coplanar nature of cation displacements in
archetypical AFEs, which is otherwise not detectable by neutron/X-ray
diffraction or electron microscopy.

Herein, we revisit the structure of the FIE state in AGN by combining
X-ray/neutron powder diffraction and neutron PDF. We show that both
the non-coplanar nature as well as modulation of the neighboring
electric dipoles in AGN ultimately derive from coupled Ag-O and Nb-O
bonds, which are central to the evolution of its ferrielectric nature. We
furthermore show that both of these aspects can be described based on a
model of periodic twin boundaries, such as presented by us for the AFE
structure of NaNbO3 [33,34]. We also show for AGN, the periodic twin
boundaries exhibit non-Ising characteristics, which allows for a more
gradual transition of the neighboring dipole moments [35]. These
findings enrich our understanding of the types of electric dipole con-
figurations in dielectric materials and reveal the structural un-
derpinnings of a FIE phase.

Fig. 1. (a,b) Illustration of the (a) antiferroelectric Pbcm, and (b) the ferrielectric P21am structures. (c,d) Rietveld refinement of the NPD data collected at 100 K using
(c) Pbcm structural model and (d) P21am structural model. Observed (black symbols), calculated (red line), difference (blue line) profiles, and Bragg positions (red
ticks) obtained after the Rietveld refinement using GSAS II software. Weighted residuals (Rw) are shown for both the refinements. Fits of neutron G(r) over the range
1.5 to 16 Å measured at 100 K and 300 K using Pbcm space group structure (e and g) and P21am space group structure (f and h). The difference between the measured
and calculated data is shown by the blue curves at the bottom. The solid line represents the zero line for the difference plot. The PDF fit observed using the P21am
model is better than the Pbcm model, which is reflected in the Rw values and also from the difference curves, such as highlighted by the red-colored boxes.
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First, we undertook Rietveld analysis of powder X-ray (see SI [36])
and NPD data in order to determine whether the long-range structure
belongs to an antipolar (Pbcm) (structural prototype shown in Fig. 1(a))
or polar (P21am) (structural prototype shown in Fig. 1(b)) space group.
However, fitting of the 100 K and 300 K NPD data based on either of the
structural models was equally satisfactory, as indicated by nearly equal
weighted Rw factors (Fig 1(c) and 1 (d)) (300 K data for X-ray/neutron
diffraction are shown in Figures S2, S3 in the SI [36]). It should be noted
that the P21am space group is a subset of the Pbcm space group. More-
over, the unit cells of P21am and Pbcm space groups are equivalent with
a/b ≈ 2(1/2) ap, c ≈ 4 cp, where ap and cp represent pseudocubic
perovskite unit cell parameters. These factors limit the unequivocal
determination of the average structure to be either antiferroelectric or
ferrielectric. We also carried out two-phase Rietveld refinement, how-
ever the refinement resulted in negative Uisoand therefore not consid-
ered further. This led us to rule out any possibility of the coexistence of
P21am and Pbcm phases at 300 K and 100K.

To resolve the structural ambiguity, we next analyzed neutron PDF
data G(r) collected at 100 K and 300 K, which directly probes the local
structural distortions in perovskite oxides [37-39]. See Supplementary
Information for details of measurement of G(r)) [36]. The neutron
bound coherent scattering lengths are: bAg~5.922 fm, bNb~7.054 fm and
bO~5.803 fm [40]. Since Ag and O scatter almost equally, while Nb
scatters significantly more, neutron PDF provides very good sensitivity
for all the corresponding atom-atom pair correlations. First, we

attempted fitting of the absolutely normalized G(r) using the antipolar
Pbcm and polar P21am structural models, Figs. 1 (e- h). The fitting range
of r ~ 1.5–16 Å is chosen to approximately correspond to the longest
dimension of one unit cell and, therefore, represent the minimum length
scale over which the symmetry elements could be applied and all
possible nearest neighbor atom-atom connectivity examined. We
observe that the experimental G(r) can be fitted better with the P21am
structural model over that of Pbcm, which therefore clearly indicates
that the structure of AGN is polar over short length scales (r < 16Å).
Box-car type refinement indicated that the local polar P21am structure
does not extend beyond 24 Å (see Supplementary Information [36] for
details). In this respect, AGN is similar to other polar perovskites, where
the bonding requirements of the cations (Ag+1 and Nb+5) lowers the
symmetry of the local structure vis-à-vis the long-range average struc-
ture [41].

To clarify the exact origin of net uncompensated polarization, we
next examined the layer-wise atomic displacements. Fig. 2a depicts the
definition of the different layers within the ferrielectric P21am structure
of AgNbO3. Note that in the current depiction, the Ag for layers 1 and 2
are located near the bottom of the oxygen octahedra (negative c axis
direction), while the Ag for layers 3 and 4 are located near the top of the
oxygen octahedra (positive c axis direction). The Ag displacements at
the mirror plane (z = 0.5) are shown as a separate layer. Fig. 2b illus-
trates the vectorial representation of the layer-wise in-plane displace-
ments of Ag and Nb within their respective oxygen environments at 100

Fig. 2. (a) Schematic illustration of the ferrielectric crystal structure of AgNbO3. The structure is segmented into different layers stacked along the 001 direction, in
order to clarify the in-plane atomic displacements. (b) The layer-wise off-center cationic displacements at 100 K. The Nb atoms are placed within the oxygen
octahdera marked in green (such as indicated by black circles) and the Ag atoms are marked in grey (such as indicated by red circles). The off-centred displacements
of the Ag and Nb atoms are shown with black arrows. (c) The orientation of the projected cationic displacements on the a-b plane for 100 K and 300 K are shown.
Note that the Ag and Nb cationic displacements in the a-b plane at 100 K have wider angular spread than the same at 300 K.
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K. The orientation of the projected cationic displacements on the ab
plane at 100 K and 300 K are shown in Fig. 2c. There are two aspects
which are clearly evident: (a) the magnitude of the cation-centric di-
poles is different for the different layers, with Ag-centric dipole moments
having larger variation than the Nb centric dipoles, (b) the dipole mo-
ments for the different layers are misoriented with respect to each other.
These two factors together lead to a net uncompensated polarization in
ferrielectric AGN. Notably, the cationic displacements in Layers 1 and 4
approach parallel to <100> at 300 K, which can explain a experimen-
tally observed reduction in remanent polarization with increasing tem-
perature as the material approach an ideal AFE state [42]. Our results for
cation-centric polarization components in AGN is consistent with earlier
reports [15,32].

Below, we examine what casues the different magnitudes of layer-
wise cation-centric dipole moments . Fig. 3 shows the bonding envi-
ronments for (a) z = 0.5, (b) z = 0.25 and (c) z = 0. Along the mirror
plane (z = 0.5), the Ag atoms are bonded to the apical O of the neigh-
boring Nb-O ocatehdra, and the shortest Ag-O bond length is ~ 2.41 Å In

comparison, for the Ag atoms near z = 0.25 and z = 0 (the unit cell
boundary), the shortest Ag-O bond lengths are ~ 2.45 Å and ~2.62 Å,
respectively. The different bonding environments for Ag can be
explained due to coupled nature of the Ag-O and Nb-O bonds. The O 2p
valence bands are known to overlap with the Nb 3d and Ag 4d states
[43], leading to stronger bonding interactions and therefore formation
of shorter Ag-O and Nb-O bonds. As shown in Fig. 3(a), the shorter Nb-O
bonds are located away from the z = 0.5 plane, thereby leaving the
apical O (marked in red circle) to interact more strongly with the
neighboring Ag and form very short Ag-O bond (2.41 Å). In contrast, as
shown in Fig. 3(c), the shorter Nb-O bonds are directed towards the z =
0 plane – this leaves the O 2p states (marked in red circle) to interact
with the d orbitals of both the neighboring Nb and Ag. The later scenario
weakens the Ag-O interaction and thereby increases the shortest Ag-O
bond distance to 2.62 Å An intermediate situation exists for the Ag
environment at z = 0.25, where the apical O atoms (marked with red
circle) form short bonds with one of the Nb atoms and one Ag atom,
which leads to an intermediate value of 2.45 Å for the shortest Ag-O

Fig. 3. Local bonding environment showing variations in cation-anion bond lengths for different layers of the P21am structural model (units are in Å) at 100 K. The
corresponding crystal orientations for the figures on the left and right panels are shown at the bottom, The shorter Nb-O bond lengths are underlined in red.
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bond distance. In essence, variation in magnitude of the cation-centric
dipoles partly arises from coupling between the nearby Nb-O and
Ag-O bonds and its consequent influence on bond distances. In addition,
tilting/rotation of the oxygen octahedra may further influence the net
off-centering of the Ag atoms within the distorted O dodecahedra. Fig. 3
depicts the direction of tilting of the octahedra around the 110 axis and
rotation of the octahedra around the 001 axis. For all the depicted Ag
atoms, the surrounding oxygen octahedra exhibit out-of-phase tilting.
However, for the z = 0.5 and z = 0 layers, the top and bottom octahedra
are rotated in-phase around the 001 axis. In contrast, for the z = 0.25
(also z = 0.75) layer, the top and bottom octahedra are rotated
out-of-phase around the 001 axis, which can play an important role in
reducing the net Ag off-centering displacement and the resultant dipole
moment for this layer (Layer 2 in Fig. 2b).

Earlier, in the context of AFE NaNbO3, we proposed a structural
model wherein the out-of-phase rotation across some octahedral layers
is rationalized as a periodic stacking of a 180◦ twin variants [33,34].
Based on local structure analysis, we also showed that the 180◦ twinning
is driven by a dominance of A-site centric distortion (caused by octa-
hedral tilting/rotation) over B-site centric distortion (caused by zone
center displacement of Nb), which is indicated by their respective
distortion indices, viz. D: ~10.5 for AO12 over ~5.5 for BO6 in NaNbO3
[34]. Here, we demonstrate that the P21am ferrielectric structure of
AgNbO3 can also be described as a periodic assemblage of 180◦ twin
boundaries with some unique aspects. Fig. 4 shows cation displacements
along 〈100〉, 〈010〉, and 〈001〉 at 100 K and 300 K, depicted as function of
their respective positions along [001] axis. Since the dominant 〈100〉
component of the cation displacements flip by 180◦ near c = 0.25 and
0.75 (Fig 4a), the ab planes at c = 0.25 and 0.75 are defined as the twin
boundaries. Importantly, although the 〈100〉 component dominates,

significant 〈010〉 and 〈001〉 components of cation displacements are also
present (Fig 4b,c). The polarization along the three different crystal axes
due to these atomic displacements are listed in the Table 1 (see Sup-
plementary Information [36] for details of calculation) The non-zero
〈010〉 and 〈001〉 polarization components points out the unique
non-Ising nature of the 180◦ twin boundaries in AgNbO3 [35]. The
cation displacements along 〈001〉, that is polarization vectors perpen-
dicular to the depicted twin boundaries at c = 0.25 and 0.75, underlies
the partial Neel-type characteristic of the twin boundaries. There is also
a small polarization component along 〈010〉, which indicates some de-
gree of Bloch-type characteristic. Essentially, the P21am structural
model in AgNbO3 encapsulates a non-Ising character of the periodic
180◦ twin boundaries, a schematic view of which is provided in Fig. 4d.
Traditionally, 180◦ ferroic boundaries are described to have an Ising
nature in which one principal polarization component flips by 180◦

across an interface and only changes allowed are for the magnitude of
the polarization vector [44,45]. However, later studies indicated that
ferroelectric domain boundaries can indeed have mixed
Ising-Bloch-Neel characteristics, even in well-known ferroelectrics, such
as BaTiO3 and LiNbO3 [46,47]. The non-Ising nature of a ferroic
boundary can especially arise in the presence of multiple order param-
eters, in contrast to a single order parameter for Ising-like boundaries
[35]. The two different structural prototypes for AFE (such as NaNbO3)
and ferrielectrics (such as AgNbO3) can be understood in this context.

For AgNbO3, the average D for AO12 is 7.7, while average D for BO6 is
5 (see Supplementary Information for details of calculation of D [36]). In
comparison, for NaNbO3, the D for AO12 is 11, while the D for BO6 is 5
[34]. That is, even though distortion around the A-site is larger than that
around the B-site, the difference between them is lower in AgNbO3 as
compared to that in NaNbO3. Since in NaNbO3, the twin boundary is
overwhelmingly influenced by A-site distortions, the A-site centric di-
poles constitutes the primary order parameter and hence Ising-type twin
boundaries can well describe the AFE structure of NaNbO3. However, in
AgNbO3, the more comparable values of D for A- and B-sites ensures that
both A- and B-site centric dipoles constitute multiple order parameters,
thereby giving rise to non-Ising characteristic for the twin boundaries. In
other words, the ferrielectric order as observed in AgNbO3 is an inter-
mediate state between antiferroelectric and ferroelectric states, whereby

Fig. 4. Non-Ising ferroic domain boundaries in AGN at 100 K. (a,b,c) The displacements of Ag and Nb cations along (a) 〈100〉, (b) 〈010〉, and (c) 〈001〉 at their
position along the c axis from the origin are shown. Blue rectangles show the 180◦ domain boundaries at c = 0.25 and 0.75. (d) Schematic illustration of the
polarization field across mixed non-Ising twin boundaries, which is based on the experimentally measured cation displacements shown above. Note that the solid and
the dotted lines indicate polarization directions with positive and negative y-components, respectively.

Table 1
Magnitude of net polarisation along [100], [010], and [001] calculated at 100 K
and 300 K using the atomic coordinates observed from PDF refinement.

Temp (K) Px (μC/cm2) Py (μC/cm2) Pz (μC/cm2)

100K-Local 1.668 7.5E-15 2.1E-14
300K-Local 1.034 4.9E-15 3.2E-14
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even though DA-site > DB-site, both order parameters constituting A-and
B-site centric distortions have comparable influences on the nature of
the periodic twin boundaries.

The atomistic structural model presented here is significant to un-
derstand the low-field polarization behavior of ferrielectric AgNbO3,
which is shown in (Fig. 5(a)). For electric-fields below the threshold
field for ferrielectric-ferroelectric transition, EF ~150 kV/cm [2], the
material is supposed to be in the ferrielectric state. However, as shown in
Fig. 5(b), the remanent polarization Pr increases with E, which discounts
against a purely ferrielectric phase, since for a ferrielectric state the
remanent polarization is not expected to increase with increase in
electric-field amplitude. Instead, we propose that the observed
non-linear increase in Pr below EF is due to non-reversible 180◦ twin
boundary motion.

In conclusion, we present evidence that indicates that the ferri-
electric phase in AgNbO3 is a periodic assemblage of 180◦ twin
boundaries of non-Ising type, whose exact nature is determined by a
delicate balance between local distortions around the A- and B-sites of
the perovskite structure. Our atomistic model can describe the gradual
transition from the FIE state to the AFE state with temperature and the

FIE state to the FE state with the application of an electric field. This
insight provide useful guidance for the design of materials with mixed
antiferroelectric/ferrielectric properties.
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I. Experimental details 

A. Material Preparation:  

AgNbO3 ceramic samples were prepared using conventional solid-state reaction method with 

sintering under flowing oxygen. Stoichiometric amounts of Ag2O (99.99%, Sigma Aldrich) and 

Nb2O5 (99.99%, Sigma Aldrich) powders were ball-milled in ethanol for 24 h using a planetary 

ball mill. After drying, the mixtures were calcined at 950˚ C for 8 h, using a tube furnace, in 

flowing oxygen at a rate of 500 cm3 min-1. The calcined powders were milled in ethanol for 12 

hours. After drying, the powders were mixed with 5 wt% polyvinyl alcohol (PVA) solution and 

then pressed into pellets with a diameter of 12 mm and 1.5 mm thickness under 400 MPa 

pressure. The pellets were heated at a rate of 5˚ C min-1 to 600˚ C and held at this temperature 

for two hours to burn off the PVA. The samples were subsequently sintered at temperatures 

1000˚ C in oxygen at a flow rate of 500 cm3 min-1 for 8 h, then cooled to ambient temperature 

at a rate of 5˚ C min-1. The AgNbO3 pellets were ground using an agate mortar and pestle and 

sieved through a 200-μm mesh for neutron diffraction and scattering experiments. During 

sintering, the pellets were covered with calcinated AgNbO3 powders to mitigate the 

volatilization of metal atoms. 

The following figure shows representative scanning electron micrographs of fracture surface 

of sintered AGN ceramics. The fracture surface revealed dense microstructure with minimal 

porosity. Magnified view from selected region indicates that the grain sizes are in the range of 

few microns.  

 

Figure S1: Scanning electron micrographs of fracture surface of AgNbO3 ceramics. Large area 

micrograph on the left shows dense pore-free microstructure. High magnification images from 

selected areas on the right indicates grain sizes of a few microns.  

 

  



B. Experimental Measurements:  

Ambient temperature X-ray powder diffraction (XRD) was performed using a Bruker D-8 

diffractometer with Lynxeye XE position-sensitive detector, while in-situ high temperature 

studies were performed on a Bruker D-8 with samples loaded as a packed powder in an Anton-

Paar HTK1200 diffraction furnace. The diffractometer was equipped with a Bruker Vantec 

linear position-sensitive detector to enable rapid XRD pattern acquisition over the angular 

range of 20 to 120 °2Θ.The XRD system was calibrated using NIST SRM660a LaB6 powder 

in order to determine the instrument response up to 120 °2Θ and the Rietveld analysis was 

performed using GSAS-II [S1].  

Time-of-flight neutron-scattering measurements were conducted at the Spallation Neutron 

Source (Oak Ridge National Laboratory). Neutron-diffraction (ND) experiments were 

performed at the POWGEN instrument [S2]. Approximately, 3 g of AgNbO3 powder sample 

was sealed in a 6-mm-diameter vanadium can with helium exchange gas and loaded in the 

POWGEN automatic changer. At first, the sample was cooled down to 100K for data collection 

and then heated to 300K for room temperature data collection with a heating rate of 5 K/min. 

Total neutron-scattering measurements were conducted at the NOMAD instrument using 

Automated Sample Changer with Cobra Cryostream [S3]. The measured scattering intensities 

were normalized against proton charge and scattering from a 6-mm vanadium rod to correct for neutron 

flux and detector efficiency. The total scattering data cutoff at a maximum wavevector transfer 

Qmax of 45 Å-1 was used for the Fourier transform to the reduced pair distribution function, 

which is defined by the following function: 
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 , (1) 

where G(r) is related to the atom-pair density function ρ(r) and the pair distribution function g(r) 

through the following relations: 

( ) ( )0 0( ) 4 4 1G r r r r g r       = − = −    , (2) 

where 0 is the atomic number density.[S4,S5] Small-box modeling of the PDF data was conducted 

with PDFgui packages [S4].  

 

 

 

 

 

  



II. Results 

A: Rietveld refinement of diffraction patterns: 

  

Figure S2: Rietveld refinement of AgNbO3 using X-ray diffraction data measured at 300K 

with (a) P21ma space group, and (b) Pbcm space group. Observed (black symbol), calculated 

(red line), difference (blue line) profiles, and Bragg positions (pink ticks) obtained after the 

Rietveld refinement using GSAS II software. Weighted residuals (Rw) are shown for all the 

refinements. 

 

 

 

 
Figure S3: Rietveld refinement of AgNbO3 using neutron diffraction data measured at 300K 

with (a) P21ma space group, and (b) Pbcm space group. Observed (black symbol), calculated 

(red line), difference (blue line) profiles, and Bragg positions (pink ticks) obtained after the 

Rietveld refinement using GSAS II software. Weighted residuals (Rw) are shown for all the 

refinements. 

 

  



B. Box-car refinement of G(r) 

Box-car type refinements over different r-ranges were performed in order to estimate the 

length-scale of the local polar P21am structure. The results are shown below. It is clearly seen 

that the residual Rw increases steeply beyond r ~ 24 Å, which indicates that beyond this length-

scale the structure averages out to a non-polar Pbcm structure. 

 

Figure S4: Fitting of neutron G(r) over different r-ranges. The respective Rw values for each 

fitting window are shown at the bottom. 

C. Polarization Calculation: 

Calculation of Px using 100 K local atomic coordinates observed from PDF refinement. 

Atom 

name x 

x 

normal dx Q (C) Q.dx (C.m) 

Ag1 0.748799 0.75 -6.73006E-13 1 -1.07681E-31 

Ag2 0.248799 0.25 -6.73006E-13 1 -1.07681E-31 

Ag3 0.248799 0.25 -6.73006E-13 1 -1.07681E-31 

Ag4 0.748799 0.75 -6.73006E-13 1 -1.07681E-31 

Ag5 0.772876 0.75 1.2819E-11 1 2.05105E-30 

Ag6 0.272876 0.25 1.2819E-11 1 2.05105E-30 

Ag7 0.721231 0.75 -1.61213E-11 1 -2.57941E-30 



Ag8 0.221231 0.25 -1.61213E-11 1 -2.57941E-30 

Nb1 0.271398 0.25 1.19908E-11 5 9.59265E-30 

Nb2 0.771398 0.75 1.19908E-11 5 9.59265E-30 

Nb3 0.771398 0.75 1.19908E-11 5 9.59265E-30 

Nb4 0.271398 0.25 1.19908E-11 5 9.59265E-30 

Nb5 0.717623 0.75 -1.81431E-11 5 -1.45145E-29 

Nb6 0.217623 0.25 -1.81431E-11 5 -1.45145E-29 

Nb7 0.217623 0.25 -1.81431E-11 5 -1.45145E-29 

Nb8 0.717623 0.75 -1.81431E-11 5 -1.45145E-29 

O1 0.257982 0.25 4.47288E-12 -2 -1.43132E-30 

O2 0.757982 0.75 4.47288E-12 -2 -1.43132E-30 

O3 0.757982 0.75 4.47288E-12 -2 -1.43132E-30 

O4 0.257982 0.25 4.47288E-12 -2 -1.43132E-30 

O5 0.235365 0.25 -8.20103E-12 -2 2.62433E-30 

O6 0.735365 0.75 -8.20103E-12 -2 2.62433E-30 

O7 0.522059 0.5 1.23612E-11 -2 -3.95559E-30 

O8 0.022059 0 1.23612E-11 -2 -3.95559E-30 

O9 0.022059 0 1.23612E-11 -2 -3.95559E-30 

O10 0.522059 0.5 1.23612E-11 -2 -3.95559E-30 

O11 0.45225 0.5 -2.67577E-11 -2 8.56247E-30 

O12 0.95225 1 -2.67577E-11 -2 8.56247E-30 

O13 0.95225 1 -2.67577E-11 -2 8.56247E-30 

O14 0.45225 0.5 -2.67577E-11 -2 8.56247E-30 

O15 0.757314 0.75 4.09855E-12 -2 -1.31154E-30 

O16 0.257314 0.25 4.09855E-12 -2 -1.31154E-30 

O17 0.020433 0 1.14501E-11 -2 -3.66402E-30 

O18 0.520433 0.5 1.14501E-11 -2 -3.66402E-30 

O19 0.520433 0.5 1.14501E-11 -2 -3.66402E-30 

O20 0.020433 0 1.14501E-11 -2 -3.66402E-30 

O21 0.46017 0.5 -2.23196E-11 -2 7.14226E-30 

O22 0.96017 1 -2.23196E-11 -2 7.14226E-30 

O23 0.96017 1 -2.23196E-11 -2 7.14226E-30 

O24 0.46017 0.5 -2.23196E-11 -2 7.14226E-30 

    

Dipole 

moment 

8.06594E-30 

C.m 

    Px 

0.016676347 

C/m2 

 

D. Distortion parameter calculation: 

The magnitude of the octahedral and cubooctahderal distortions (D) can be calculated 

according to the equation 

𝐷 =  
1

𝑛
[∑

|𝑑𝑖 − 𝑑|

𝑑

𝑛

𝑖

]          (3) 



 where n is the coordination number 𝑑𝑖 and 𝑑 are the individuals and average values of the 

different A(B) – O interatomic distances, respectively [S6].   

 For the AGN structure, D was calculated for the different Ag and Nb sites. In case of 

presence of two crystallographic phases, the relative fraction of each ratio was taken into 

account to calculate the average value of D for a particular crystallographic site.  

 

Figure S5: Calculated values of D for various Ag and Nb sites, which are plotted as a function 

of their relative position along the 001 crystallographic axis.  
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