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a b s t r a c t

A main limitation of most models describing the effect of stress on the magnetic behavior is that they

are restricted to uniaxial – tensile or compressive – stress. Nevertheless, stress is multiaxial in most of

industrial applications. An idea to overcome the strong limitation of models is to define a fictive

uniaxial stress, the equivalent stress, that would change the magnetic behavior in a similar manner

than a multiaxial stress. A first definition of equivalent stress, called the deviatoric equivalent stress, is

proposed. It is based on an equivalence in magneto-elastic energy. This formulation is first derived for

isotropic materials under specific assumptions. An extension to orthotropic media under disoriented

magneto-mechanical loading is made. A new equivalent stress expression, called generalized equiva-

lent stress, is then proposed. It is based on an equivalence in magnetization. Inverse identification of

equivalent stress is made possible thanks to a strong simplification of the description of the material

seen as an assembly of elementary magnetic domains. It is shown that this second proposal is a

generalization of the deviatoric expression. Equivalent stress proposals are compared to former

proposals and validated using experimental results carried out on an iron–cobalt sheet submitted to

biaxial mechanical loading. These results are compared to the predictions obtained thanks to the

equivalent stress formulations. The generalized equivalent stress is shown to be a tool able to foresee

the magnetic behavior of a large panel of materials submitted to multiaxial stress.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In most practical electromagnetic applications, magnetic mate-
rials are submitted to multiaxial stress inherited from forming
process or appearing in use. As an example, inertial stresses in high
rotating speed systems for aeronautic equipments or new technol-
ogies of flywheel, stresses due to binding process (encapsulation) of
electrical machines and actuators, residual stress associated to
plastic straining (forming) or cutting process can be mentioned.
Several examples that can be associated to some generic types of
stress tensor are detailed in this paper. On the other hand, since the
works of Mateucci [1] and Villari [2], mechanical stress is known to
change significantly the magnetic behavior of materials (see for
instance [3]) as well as their magnetostrictive behavior [4]. The
design of electromagnetic systems consequently requires coupled
and multiaxial models. However, the few available and practically
implemented models describing the effect of stress on the magnetic
behavior are restricted to uniaxial (tensile or compressive) stress.

Jiles–Atherton type models [5–8] and Preisach type models
[9–12] are the most popular but other approaches have also been
proposed [13–15].

One way is to use energy-based models written at an appro-
priate scale. Indeed the development of fully multiaxial magneto-
elastic models is a promising issue [16–22], but still leads to
dissuasive computation times for engineering design applications.
The second part of this paper briefly recalls such a multiscale
magneto-elastic model for the prediction of the effect of multi-
axial stress on magnetic and magnetostrictive behavior.

A second way is to implement multiaxial stress directly in a
macroscopic model (see for instance [23]). Even sometimes effec-
tive, this solution is not fully satisfactory since the physics of
coupling is not suitably described. Another approach combining
uniaxial models and multiaxial stress is to define and calculate a
‘‘fictive’’ uniaxial stress, the equivalent stress that would change the
magnetic behavior in a similar manner than the multiaxial one. The
second step is to implement this scalar value into a uniaxial
macroscopic magneto-mechanical model. Some authors proposed
such an approach in the past years [24–27]. It is shown that in
many cases these proposals are not fully satisfactory. Recently a
definition of an equivalent stress based on an equivalence in
magneto-elastic energy has been proposed [28,29]. Assuming that
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the samemagneto-elastic energy corresponds to the samemagnetic
behavior, the equivalent stress is defined as the uniaxial stress,
applied along the magnetic field direction that leads to the same
macroscopic magneto-elastic energy as the multiaxial one. This
formulation is named as the deviatoric equivalent stress because it
is expressed in terms of the deviatoric stress tensor. Its implemen-
tation is very simple; it is nevertheless involving some strong
hypotheses on the behavior of the material and on the magneto-
mechanical loading. Extension to orthotropic media and to a
disoriented loading is proposed in this paper in order to solve some
of the limitations of this approach. In the next section, a generalized
equivalent stress is proposed, based on an equivalence in magne-
tization. Since magnetostatic and magnetoelastic terms cannot be
easily dissociated in the expression of the free energy, the definition
of the equivalent stress is made possible thanks to a strong
simplification in the description of the material. Bulk magnetic
material is seen as an assembly of elementary magnetic domains.
The validation of these proposals requires to carry out magnetic
measurements on materials submitted to multiaxial stress thanks
to a multiaxial experimental set-up. The proposed validation is
based on biaxial experiments.

Biaxial testing in mechanics is usually associated to traction–
torsion, internal pressure, and/or traction–traction (along two
orthogonal axes) experiments. Considering that sheet format is
the most popular format for magnetic materials constitutive of
electrical machines [3], only the latter experiment is suitable to
study the magnetic behavior under biaxial mechanical conditions.
Previous experiments from different authors are available in the
literature (see for instance [24–26,30] andmore recently [31–33]).
But all of them present some mismatches especially concerning
the homogeneity of the stress in the measurement area (e.g.
Langman’s eight points bending system [30]) or the inaccurate
evaluation of magnetic quantities [33]. A previous paper detailed
a new experimental procedure and corresponding results [34,35].
The procedure, partially recalled in this paper, allowed to evaluate
the influence of a biaxial stress state on the magnetic behavior
under adequate magnetic and mechanical conditions.

The new experimental results have been used in order to test
the validity of previous and new formulations of equivalent
stress. A short review of previous experimental results is finally
made. These results are compared to predictions obtained thanks
to the new formulation of equivalent stress. The generalized
equivalent stress is shown to be a tool able to foresee the
magnetic behavior of a large panel of materials submitted to
multiaxial stress.

The paper is divided into five sections. In the first part,
some typical multiaxial stress states that can be encountered in
electromagnetic devices are presented. Magneto-elastic modeling
approaches able to account for the effect of multiaxial stress on the

magnetic behavior are presented in the second part. In the third and
fourth parts, two distinct proposals for the definition of an equiva-
lent stress for the magnetic behavior are proposed: the deviatoric
and the generalized equivalent stresses. A validation of these
approaches is finally proposed by comparison to biaxial magneto-
mechanical measurements.

2. Multiaxial stress in magnetic materials and structures

Forces, torques, stresses acting on the material are associated
to any operating electromagnetic system. Multiaxial stresses are
generally created due to the nature of loading, to the complex
geometry of devices or to the manufacturing process. Several
examples of typical loadings and associated stress tensors are
given in this section. Elastic mechanical behavior is assumed.

2.1. Multiaxial stress ‘‘in use’’: centrifugal forces and torque

The first example concerns the effect of centrifugal forces.
Indeed modern technologies of electrical machines especially for
aeronautical applications involve higher and higher rotating
speed and torque. Centrifugal forces are also critical in new
technologies of high speed flywheels (Fig. 1) [36].

Let us consider a ferromagnetic full cylinder (external
diameter feFFig. 2) submitted to a constant angular speed
~o ¼ o �~ez. The volumetric forces are radial and related to the
radius r by ~f v ¼ rro2 �~er (r is the mass density of the considered
material). The corresponding stress tensor r0 is diagonal (1). The
definition of each term depends on the assumption on the stress
and strain tensors. Plane stress approximation or plane strain
approximation leads to two classical results in continuum

Fig. 1. Examples of flywheel systems: (a) axial-flux and, (b) radial-flux permanent magnet machines [36].

φe

ez C=C.ez

ω=ω.ez

er

eθr

Fig. 2. Schematic view of a ferromagnetic full cylinder submitted to angular speed
~o and/or torque ~C .
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mechanics:

r0 ¼
srr 0 0

0 syy 0

0 0 szz

0
B@

1
CA

ðr,y,zÞ

ð1Þ

� In the case of plane stress conditions (free deformation
through the thickness), the stress tensor is biaxial and its
components are given by

srr ¼�K u � ð3�2n�4n2Þ r2� fe

2

� �2
 !

syy ¼�K u � ð1þ2n�4n2Þr2�ð3�2n�4n2Þ fe

2

� �2
 !

szz ¼ 0

8>>>>>>><
>>>>>>>:

� In the case of plane strain conditions:

srr ¼�K u � ð3�2nÞ r2� fe

2

� �2
 !

syy ¼�K u � ð1þ2nÞr2�ð3�2nÞ fe

2

� �2
 !

szz ¼�2nK u 2r2�ð3�2nÞ fe

2

� �2
 !

8>>>>>>>>>>><
>>>>>>>>>>>:

with K u¼ ro2=ð8ð1�nÞÞ, n denoting Poisson’s ratio of the material.
The stress is multiaxial and increases with the square of the
angular speed.

The second example deals with the stress associated to the
torque acting on the rotor of the rotating machine. The torque
occurs during a transient period of the system, when rotating
speed is increasing or decreasing. Stress due to pure torque is
usually added to the stress due to centrifugal forces.

Let us consider the previous ferromagnetic full cylinder (Fig. 2)
submitted to a constant torque ~C ¼ C �~ez. The associated stress
tensor r1 is null except the shear term syz:

r1 ¼
0 0 0

0 0 syz

0 syz 0

0
B@

1
CA

ðr,y,zÞ

ð2Þ

with

syz ¼
8rC

pf2
e

r denoting the radial position (Fig. 2). Such a shear stress is
associated to a biaxial principal stress tensor, with opposite eigen
stresses sE ¼ 7syz.

2.2. Initial multiaxial stress due to forming process: binding and

coiling processes

Multiaxial stress can occur during the forming process of the
magnetic material, during the assembly of the electrical machine,
or during the machining of a part of the machine (usually the
magnetic sheets).

The binding process is usually employed to stack together the
magnetic sheets of the stator of an electrical machine. It also
ensures a protection of the magnetic circuit. This binding is
usually realized on an axisymetric stator: the ring is heated to
dilate and placed around the stator. The thermal contraction
ensures the mechanical anchoring (see Fig. 3).

The stress due to binding can be calculated under plane strain
assumption, and using simplified geometric conditions. Let us
consider a rigid cylindrical yoke of internal diameter f0, binding
an iron cylinder of external diameter fe ¼f0þ2d and internal
diameter fi (Fig. 4). Binding strength depends on these three
geometric parameters and on material constants (the so-called
Lamé coefficients m and l in the case of isotropic elasticity). After
calculation we get the stress tensor r2 as a function of the radius r
(Eq. (3)). The stress state is triaxial, non-homogeneous and
linearly depends on d parameter:

r2 ¼
srr 0 0

0 syy 0

0 0 szz

0
B@

1
CA

ðr,y,zÞ

ð3Þ

with

srr ¼�Kd 4� f0

r

� �2
 !

syy ¼�Kd 4þ f0

r

� �2
 !

szz ¼�Kd
4l

mþ2l

� �

8>>>>>>>>>><
>>>>>>>>>>:
and

K ¼ mðmþ2lÞ �fe

mðf2
e þf2

i Þþ2lf2
i

Multiaxial stress can also appear in a magnetic material after
plastic straining. Associated stresses are commonly called ‘‘inter-
nal stresses’’ if the scale of fluctuation of stress is lower than the
grain size and ‘‘residual stresses’’ if the scale of fluctuation of
stress is of the order of the specimen size. Effect of plasticity on
magnetic materials can be interpreted as an effect of these
internal or residual stresses [37,38]. Plastic strains occur for
example at the cutting edge of sheets [39,40], or after bending
during the forming process. We can consider the case of the

Fig. 3. Example of binding of a stator using an aluminum ring.

+ =

φ0 φe>φ0φi φ0

Fig. 4. Theoretical binding of a cylinder inside a rigid yoke.
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coiling of a sheet around a cylinder: an irreversible deformation
may occur if the diameter of the cylinder is too small. The
mechanical state associated to the coiling is complex. A usual
simplification plotted in Fig. 5 is to consider a pure bending of the
sheet (thickness e and plane (~ez,~ex)) due to a torque ~M ¼ 7M �~ez
associated to a dry friction condition on the lower surface
(relative slip speed considered as zero). We can evaluate a stress
tensor r3 through the thickness of the sheet (depth y) as follows:

r3 ¼
K uuðyÞ � ð2mþlÞ 0 0

0 K uuðyÞ � l 0

0 0 K uuðyÞ � l

0
B@

1
CA

ðx,y,zÞ

ð4Þ

with

K uuðyÞ ¼ M

EI
yþ e

2

� �
E is the Young’s modulus and I the moment of inertia of the
section (~ey,~ez) around ~ez axis. When the yield stress is reached on
the upper surface, stress tensor brings multiaxial plasticity,
leading to residual stresses after unloading. Fig. 6 shows an
iron–cobalt sheet deformed by bending after a coiling.

The previous simple examples show the need of magneto-
elastic models considering multiaxial macroscopic stresses in
order to predict their effects and optimize the design of electro-
magnetic devices. In industrial magnetic systems, the distribution
of stress can be more complex and is often estimated using finite
element techniques (see for instance [41,42]).

3. Multiaxial magneto-elastic models

The prediction of the influence of multiaxial stress on mag-
netic behavior supposes the introduction of the complete
mechanical loading into a magnetoelastic modeling. As already
mentioned, the few practically implemented models describing
the effect of stress on magnetic behavior are restricted to uniaxial
mechanical loadings (tension or compression) [5–15]. A first
approach to build multiaxial magneto-elastic models consists in
the definition of magneto-elastic constitutive laws including the

multiaxiality of stress at the local scale. A multiscale model
following this requirement is briefly presented in the first part.
A second approach consists in the definition of a uniaxial
equivalent stress, defined from the multiaxial loading and imple-
mented into a uniaxial constitutive law. Such an approach is
presented in the second part.

3.1. Multiaxial magneto-elastic constitutive laws: the multiscale

model

At lower scales, micromagnetics offers a deep insight on the
dynamics of magnetic structures—magnetic domains and domain
walls. Micromagnetic approaches [43] are based on the local
resolution of Landau–Lifshitz–Gilbert equation of motion often in
combination with finite element methods [44]. In order to
account for magneto-elastic coupling, the elastic energy can be
introduced with respect to the balance equations and the bound-
ary conditions [45–48]. This point remains a complex issue
particularly in the context of multiaxial stress. Despite an accu-
rate prediction of local magnetic microstructures, the small
volumes considered and the high computation time associated
to these calculations remain a significant drawback.

Following the early works of Néel [49], the development of
multiscale magneto-elastic models is a promising issue [16–22].
These models are inspired from the equations of micromagnetics
with the use of an energetic functional to be minimized but
take benefit from the results of micromagnetic calculations in
order to define simplifying assumptions. The computation times
are then significantly improved. The multiaxiality of stress can
usually be naturally accounted for in such approaches. Such a
multiscale model is briefly presented hereafter. It is a three scale
model – domain, grain and macroscopic scales – for the predic-
tion of the reversible magneto-elastic behavior of heterogeneous
materials [21,22].

A ferromagnetic medium can be seen as an aggregate of single
crystals assembled following an orientation distribution function.
Each single crystal can itself be seen as an aggregate of magnetic
domains following another distribution function. The single
crystal can be divided into domain families, each family a
corresponding to a given orientation for the magnetization. The
modeling scheme is based on the calculation of the volumetric
fraction fa of each domain family a. The volumetric fraction
corresponding to the domain family a depends on the internal
energy Wa classically defined (Eq. (5)) as the sum of the magneto-
crystalline (Eq. (6)), Zeemann (Eq. (7)) and elastic (Eq. (8))
energies:

Wa ¼WK
a þWH

a þWs
a ð5Þ

WK
a ¼ K1ðg21g22þg22g

2
3þg23g

2
1ÞþK2ðg21g22g23Þ ð6Þ

WH
a ¼�m0

~Ha � ~Ma ð7Þ

Ws
a ¼ 1

2 ra : C�1
a : ra ð8Þ

K1 and K2 are the magnetocrystalline constants, m0 denotes the
vacuum permeability. ~Ma ¼Ms~ga ¼Msgi:~ei is the magnetization of
the domain family a with Ms the saturation magnetization of the
material and gi the direction cosines of the magnetization in the
crystallographic coordinate system. ~Ha and ra denote the mag-
netic field and the stress tensor at domain scale. Ca is the local
stiffness tensor. If no specific information is known about mag-
netic domain topology, the assumption of a uniform magnetic
field within a grain (single crystal) can be employed. The
assumption of a uniform strain within a grain leads to further
simplification of the elastic energy (Eq. (9)) introducing the
magnetostriction strain tensor ema in a domain (Eq. (10)), the

ex
Sheet

ey

ez

ey

exez

M=M.e zM=-M.e z

e

Fig. 5. Schematic view of a plane sheet submitted to a torque ~M ¼ 7M �~ez .

Fig. 6. Residual curvature of an iron–cobalt sheet after severe coiling curvature

denotes internal stresses.

O. Hubert, L. Daniel / Journal of Magnetism and Magnetic Materials 323 (2011) 1766–1781 1769



average stress tensor rg over the grain and a constant Ws
0 [21].

This latter constant, uniform over a grain does not participate in
the energetic balance and is usually removed [4,51] leading to the
classical expression for the so-called magneto-elastic energy
(Eq. (11)):

Ws
a ¼�rg : emaþWs

0 ð9Þ

ema ¼
3

2

l100ðg21�1
3Þ l111g1g2 l111g1g3

l111g1g2 l100ðg22�1
3Þ l111g2g3

l111g1g3 l111g2g3 l100ðg23�1
3Þ

0
BB@

1
CCA ð10Þ

Ws
a ¼�rg : ema ð11Þ

l100 and l111 are the magnetostrictive coefficients of the single
crystal. Following Chikazumi [51] and Buiron [18] the volumetric
fraction fa is calculated using a Boltzmann type function
(Eq. (12)). The parameter S is defined by Eq. (13) and calculated
using a spatial discretization of the possible directions for the
magnetization [22]. The parameter As has been shown [21] to
be proportional to the initial susceptibility w0 of the material
(Eq. (14)):

fa ¼
1

S
expð�As �WaÞ ð12Þ

S¼
Z
a
expð�As �WaÞ da�

X
a
expð�As �WaÞ ð13Þ

As ¼ 3w0

m0M
2
s

ð14Þ

Magnetization ~Mg and magnetostriction emg at the grain scale are
finally defined as the average values of magnetization and
magnetostriction over a grain (Eqs. (15) and (16)):

~Mg ¼/~MaS¼
Z
a
fa ~Ma da�

X
a
fa ~Ma ð15Þ

emg ¼/emaS¼
Z
a
faema da�

X
a
faema ð16Þ

This calculation has to be made for each grain of a polycrystalline
aggregate. The knowledge of magneto-elastic loading at the grain
scale (~Hg ,rg) is required to process this calculation. This local
loading can be obtained from the knowledge of the macroscopic
loading and some assumptions on the microstructure using
an appropriate micro–macro scheme. The model presented
in [21,22] is based on a self-consistent scheme derived from Hill’s
formulation [53]. Once the response at the grain scale (~Mg ,emg ) is
calculated, the macroscopic response (~M ,em) of the material is
simply obtained from averaging operations (Eqs. (17) and (18)):

~M ¼/~MgS ð17Þ

em ¼/emgS ð18Þ
Such an approach is fully multiaxial since the macroscopic

mechanical loading r is multiaxial. However, the corresponding
computation time can be dissuasive for engineering design
applications, particularly if a structural analysis is foreseen.
However, in the particular case of a macroscopically isotropic
material a simplified procedure can be defined [21]. It consists
first in neglecting the fluctuations of magnetic field and stress
over the volume (uniform magnetic field and stress assumptions).
The heterogeneity of the elastic properties is also neglected. The
polycrystal is then seen as an aggregate of randomly distributed
magnetic domains, each macroscopic direction being considered
as a possible easy direction [54]. The definition of the magnetiza-
tion (Eq. (19)) and magnetostriction strain (Eq. (20)) of the

polycrystal then follows the procedure used for single crystals:

~M ¼
Z
a
fa ~Ma da ð19Þ

em ¼
Z
a
faema da ð20Þ

Such a simplified description can provide analytical results in
certain particular configurations and will be helpful for the
definition of the generalized equivalent stress.

3.2. Equivalent stress methods

Another way to account for the multiaxiality of stress in
magneto-elastic modeling is to define an equivalent stress. An
equivalent stress for magnetic behavior is a fictive uniaxial stress
that would change the magnetic behavior in a similar manner than
the real multiaxial one. This equivalent stress can be implemented
into a macroscopic uniaxial magneto-mechanical model. This
method has been followed by several authors in the past years
[24–27]. These equivalent stresses have been compared recently
[29], we only briefly recall their definition hereafter.

Schneider and Richardson [24] proposed an equivalent stress
for biaxial loadings applied to sheet specimen (Eq. (21)). It
introduces s1 and s2 the eigenvalues of the stress tensor in the
sheet plane, the magnetic field being applied along direction 1.
Equibiaxial tension or compression is supposed to have no effect
on the magnetic behavior:

sSR
eq ¼ s1�s2 ð21Þ

On the basis of experimental biaxial measurements, Kashi-
waya [25] proposed a slightly different definition (Eq. (22)), s1

being the eigenstress parallel to the magnetic field and smax the
maximum eigenvalue of the stress tensor. K is a constant that
can be adjusted for a better fitting of experimental results. This
equivalent stress is always negative. Tensile stress or equi-biaxial
compression is supposed to have no effect on the magnetic
behavior:

sK
eq ¼ Kðs1�smaxÞ ð22Þ

Based on biaxial measurement results [30], Sablik et al. [26]
proposed another definition (Eq. (23)). s1 and s2 are still the
eigenvalues of the stress tensor in the sheet plane, the magnetic
field being applied along direction 1. It can be noticed that the
definition is discontinuous for s1 ¼ 0 and that in the case of a
uniaxial loading the equivalent stress does not reduce to the
applied stress:

sS
eq ¼ 1

3ð2s1�s2Þ if s1o0

sS
eq ¼ 1

3ðs1�2s2Þ if s1Z0

8<
: ð23Þ

Pearson et al. [27], under similar assumptions and using the
notations of Schneider and Richardson’s proposal, make use of a
function gðrÞ (Eq. (24)). The equivalent stress is not explicitly
defined but using seq ¼ s1 for a uniaxial loading, an explicit
expression can be obtained. Although more accurate than the
previous proposals, this definition does not address the case of a
magnetic field not aligned along an eigendirection of the stress
tensor. Moreover this criterion is highly material and specimen
dependent, and complicated to implement due to the large
number of parameters to identify:

gðrÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1þs2

2

q
þ
X6
n ¼ 1

anðfs1�s2Þnþbs1 ð24Þ

In the configuration corresponding to a biaxial stress with
eigenvalues in directions 1 and 2, and a magnetic field applied
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along direction 1, the different equivalent stress proposals
have been compared in Fig. 7 (the adimensional ratio seq=s0 is
plotted as a function of s1=s0 and s2=s0. Pearson et al. proposal
has not been reported due to the complexity of the parameter
identification.

The former proposals for an equivalent stress exhibit strong
limitations: the mechanical loading is restricted to biaxial stress,
the magnetic field is necessarily applied along an eigendirection
of the stress tensor and they are restricted to isotropic materials.
The definition of a more general equivalent stress is requisite
considering the much more complex range of combined magnetic
and mechanical loadings that can be encountered in practical
applications (see Section 1). The multiscale model in its contin-
uous form gives directions of investigation. Homogeneous field
and stress conditions over the grain are considered.

4. Equivalent stress definition from an equivalence in
magneto-elastic energy

The following proposal of equivalent stress for isotropic
materials based on an equivalence in magnetoelastic energy has
been recently published [28].

Let us consider the definition of the magneto-elastic energy at
the domain scale (Eq. (9)). An integration of the magneto-elastic
energy over the volume leads to the macroscopic magneto-elastic
energy so that

Ws ¼�
Z
a
fa rg : ema da ð25Þ

Since homogeneous stress condition (rg ¼ r) is assumed over the
volume and using Eq. (20) we get

Ws ¼�
Z
a
fa r : ema da¼�r :

Z
a
fa ema da¼�r : em ð26Þ

r is taken as multiaxial (six independent terms) in the orthonor-
mal coordinate system (~ex, ~ey, ~ez):

r¼
sxx sxy sxz

sxy syy syz

sxz syz szz

0
B@

1
CA ð27Þ

Hypotheses must now be given on the macroscopic magnetos-
triction strain. The major hypothesis is to consider macroscopic
magnetostriction as independent from stress, neglecting the so-
called DE effect [54]. em is then only linked to the magnetic field
strength and direction ~H . Moreover magnetostriction is consid-
ered as isovolumetric (following a usual hypothesis for standard
magnetic materials). Complementary hypotheses concern the
symmetries of the material.

4.1. Isotropic material

In the case of an isotropic material, and considering a magnetic
field applied along direction ~ez, em is given by

em ¼
�1

2lðHÞ 0 0

0 �1
2lðHÞ 0

0 0 lðHÞ

0
B@

1
CA ð28Þ

where lðHÞ is the deformation measured along the magnetic field
direction. The magnetoelastic energy is given by

Ws ¼ 1
2 sxxlðHÞþ1

2 syylðHÞ�szzlðHÞ ¼ �lðHÞð32 szz�1
2ðsxxþsyyþszzÞÞ

ð29Þ
In order to get a definition independent from the chosen coordi-
nate system, the stress component in the direction of the
magnetic field is written as szz ¼ t~hr~h where ~h denotes the
direction of the applied field and t~h the transpose of ~h. The frame
associated to the magnetic field is (~h,~t1,~t2). We also recognize the
trace of the stress tensor in Eq. (29): trðrÞ ¼ sxxþsyyþszz. The
expression for the magnetoelastic energy is finally written, for
any stress tensor r:

Ws ¼�lðHÞð32
t~hr~h�1

2 trðrÞÞ ð30Þ
Let now consider a uniaxial stress su applied in the direction
parallel to the magnetic field ~h:

r¼
0 0 0

0 0 0

0 0 su

0
B@

1
CA

ð~t1 ,~t2 ,~hÞ

ð31Þ

The corresponding magnetoelastic energy, according to Eq. (26) is
simply

Ws
u ¼�lðHÞsu ð32Þ

If we assume that the same magnetoelastic energy leads to the
same magnetic behavior, the equivalent stress seq is correspond-
ing to the component su once Eqs. (30) and (32) are considered
equivalent. The following expression for the equivalent stress is
finally obtained as

seq ¼ su ¼ 3
2

t~hr~h�1
2 trðrÞ ¼ 3

2

t~hs~h ð33Þ
where s is the deviatoric part of the stress tensor r
(s¼ r� 1

3 trðrÞI, with I the identity second order tensor).

4.2. Orthotropic material

In the case of an orthotropic material, em has not a unique
definition: it depends on the direction of the magnetic field with
respect to the orthotropic frame. We consider first a magnetic
field applied along a direction of orthotropy ~ez; em is diagonal in
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Fig. 7. Adimensional iso-values of several equivalent stress proposals (seq=s0): (a) Schneider and Richardon [24]; (b) Kashiwaya [25] (with K¼1); (c) Sablik et al. [26].
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the frame of orthotropy so that

em ¼
�ð1þbÞ

2 lðHÞ 0 0

0 �ð1�bÞ
2 lðHÞ 0

0 0 lðHÞ

0
BB@

1
CCA

ð~ex ,~ey ,~ezÞ

ð34Þ

where coefficient b indicates a degree of orthotropy. Since
orthotropy and magnetic field frame are coincident
(ð~ex,~ey,~ezÞ ¼ ð~t1,~t2,~hÞ), b can formally be defined as a ratio:

b¼
t~t2em~t2�t~t1em~t1
t~t2em~t2þ t~t1em~t1

ð35Þ

When b¼ 0, the isotropic situation is recovered. b¼ 1 condition is
frequently encountered for sheet form specimens where the
material exhibits a very low deformation through the thickness
(non-oriented silicon–iron, iron–cobalt) due to a specific domain
configuration [55]. Grain-oriented silicon–iron sheets exhibit on
the other hand a value for b higher than 1 when the material is
magnetized along the transversal direction for example [56]. The
magnetoelastic energy is given by

Ws ¼ ð1þbÞ
2

sxxlðHÞþ
ð1�bÞ

2
syylðHÞ�szzlðHÞ ð36Þ

Following the same mathematical developments than in the
previous paragraph, we get a more complex definition of the
equivalent stress:

seq ¼ 3

2

t
~hs~hþ b

2
ðt~t2s~t2�t~t1s~t1Þ ð37Þ

This definition is limited to the cases where magnetic field is
aligned with an orthotropic direction. This criterion is for example
not applicable when the field is applied in a direction between the
rolling or transverse direction for GO silicon steels. It is not
applicable to the single crystalline situation when a direction
other than /1 0 0S or /1 1 0S is considered.

We consider now that the magnetic field is not applied along a
direction of orthotropy, em is nevertheless diagonal in its own
eigenframe ð~eI ,~eII ,~eIIIÞ.1 Eigenvalues are noted emI , e

m
II and emIII , and

verify emI þemIIþemIII ¼ 0. Parameters b1 and b2 are introduced so
that emI ¼ b1lðHÞ, emII ¼ b2lðHÞ and emIII ¼�ðb1þb2ÞlðHÞ. The magne-
tostriction strain tensor is finally

em ¼
b1lðHÞ 0 0

0 b2lðHÞ 0

0 0 �ðb1þb2ÞlðHÞ

0
B@

1
CA

ð~eI ,~e II ,~e IIIÞ

ð38Þ

The magnetic field is not applied along ~eI , ~eII or ~eIII . It is written in
the coordinate system using two spherical angles y and f:

~h ¼
cosf siny
sinf siny

cosy

0
B@

1
CA

ð~eI ,~e II ,~e IIIÞ

ð39Þ

Considering a stress tensor written in the eigenframe, the mag-
netoelastic energy is given by

Ws ¼�b1sxxlðHÞ�b2syylðHÞþðb1þb2ÞszzlðHÞ ð40Þ
The uniaxial stress su considered for the expression of equivalent
stress is applied along the magnetic field vector ~h. The corre-
sponding magnetoelastic energy is

Ws
u ¼ ð�b1 cos2 f sin2 y�b2sin

2 f sin2 yþðb1þb2Þcos2 yÞsulðHÞ
ð41Þ

A final form of equivalent stress is finally obtained, based on an
equivalence in magneto-elastic energy and considering no mag-
netization rotation.

seq ¼
�b1sxx�b2syyþðb1þb2Þszz

�b1 cos2 f sin2 y�b2 sin2 f sin2 yþðb1þb2Þ cos2 y
ð42Þ

The equivalent stress can be written as a function of the
deviatoric stress tensor:

seq ¼
�bt

1
~eI s~eI�bt

2
~eII s~eIIþðb1þb2Þt~eIII s~eIII

�b1 cos2 f sin2 y�b2 sin2 f sin2 yþðb1þb2Þ cos2 y
ð43Þ

This final form is more general than the previous one. The major
difficulty is to define the eigenframe of magnetostriction with
respect to the directions of magnetic and mechanical loadings.

4.3. Discussion about the deviatoric equivalent stress—isotropic

media

We are considering the simplest form of equivalent stress
(Eq. (33)) defined by an equivalence in magneto-elastic energy for
an isotropic material. The following properties can be highlighted:

� in the case of a uniaxial stress applied in the direction of the
magnetic field, the equivalent stress is the applied stress;

� the definition can be applied to a fully multiaxial mechanical
loading, not only biaxial;

� any orientation of the stress tensor with respect to the
magnetic field can be considered;

� a hydrostatic pressure leads to an equivalent stress equal to
zero, in agreement with the noneffect of hydrostatic pressure
on magnetic behavior.

In the case of a biaxial mechanical loading (s1,s2), with ~h aligned
with direction ~e1, the equivalent stress is given by

seq ¼ s1�
s2

2
ð44Þ

Results have been plotted in Fig. 8 (the adimensional ratio seq=s0

is plotted as a function of s1=s0 and s2=s0). Comparison to
experimental data will be presented in the final section.

5. Equivalent stress definition from an equivalence in
magnetization

We look back to the original definition of the equivalent stress:
it is the uniaxial stress that leads to a magnetic behavior
corresponding to the magnetic behavior of the material submitted
to the multiaxial stress. The magnetic field being imposed, the
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Fig. 8. Adimensional iso-values of deviatoric equivalent stress (seq=s0).

1 The eigenframe is not rotating since magnetization rotation is not consid-

ered in the magnetization process. If magnetization rotation occurs, the frame is

moving and a general formulation of equivalent stress is no more reachable.
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magnetic response is the magnetization. The major difficulty is
that magnetization depends on stress and magnetic field: effects
cannot be easily separated. We propose here an approach using a
surrogate multiscale model, only focused on the magneto-
mechanical behavior of one grain, defined as an assembly of
magnetic domains.

5.1. General formulation

Eq. (19) recalled here after (Eq. (45)) gives the definition of the
macroscopic magnetization of the polycrystal using the surrogate
multiscale model: isotropic material is seen as an assembly of
magnetic domains equally distributed in the volume. The defini-
tion of the volumetric fraction follows the same approach
(Eq. (46)):

~M ¼
Z
a
fa ~Ma da ð45Þ

fa ¼
expð�As �WaÞR
aexpð�As �WaÞ

ð46Þ

We suppose now that only the energetical terms associated to the
loading have to be taken into account. This assumption means
neglecting the role of magnetocrystalline anisotropy energy in the
magnetization process. Moreover stress and magnetic field are
supposed to be uniform within the material. We obtain the
following definition of the volumetric fraction of a domain a:

fa ¼
expðAsr : emaþAsm0

~H � ~MaÞR
aexpðAsr : emaþAsm0

~H � ~MaÞ
ð47Þ

Magnetization under multiaxial stress condition r is given by

~M ¼
Z
a

expðAsr : emaþAsm0
~H � ~MaÞÞR

aexpðAsr : emaþAsm0
~H � ~MaÞÞ da

~M
a
da ð48Þ

It has to be compared to the magnetization obtained under
uniaxial stress condition ru applied in the direction of the
magnetic field:

~Mu ¼
Z
a

expðAsru : emaþAsm0
~H � ~MaÞÞR

aexpðAsru : emaþAsm0
~H � ~MaÞÞ da

~M
a
da ð49Þ

The uniaxial stress ru is finally corresponding to the equivalent
stress req when ~M ¼ ~Mu so that seq is a solution of the following
equation:Z
a

expðAsreq : emaþAsm0
~H � ~MaÞÞR

aexpðAsreq : emaþAsm0
~H � ~MaÞÞda

~M
a
da

¼
Z
a

expðAsr : emaþAsm0
~H � ~MaÞÞR

aexpðAsr : emaþAsm0
~H � ~MaÞÞda

~M
a
da ð50Þ

with seq ¼ t~hreq
~h.

This equation is rather difficult to solve. Some previous works
showed that an integration can be analytically done considering
magnetic field or stress as zero [21,54]. A combination of the two
loadings is necessary in the present case. A numerical resolution
would be possible but our objective here is to propose an
analytical expression for the equivalent stress. We then have to
simplify Eq. (50) in order to identify seq.

5.2. Multidomain model and application to the definition of the

equivalent stress

The idea is to replace the volume integral by a discrete sum over
a finite number of domains [57]. The domains must be equally
distributed. The first admissible distribution is a cubic distribution
(first terms of the spherical decomposition), where only six domain

families are considered with magnetization along the six /1 0 0S
axes of an elementary cube (Fig. 9) in (~x,~y,~z) coordinate system. The
coordinate system is supposed to be defined from the direction of
the applied field so that: (~x,~y,~z) ¼(~h,~t1,~t2). This structure is
simultaneously submitted to a magnetic field ~H (Eq. (51)) and to
a multiaxial stress tensor r (Eq. (52)):

~H ¼H~x ð51Þ

r¼
sxx sxy sxz

sxy syy syz

sxz syz szz

0
B@

1
CA

xyz

ð52Þ

The definition of the magnetostriction strain tensor differs from the
definition generally used for a domain because the average beha-
vior has to be in accordance with the behavior of the isotropic
material that this simple assembly of ‘‘domains’’ is supposed to
model. Considering no rotation mechanism, the definition of the
magnetostriction strain tensor in the domain frame (DF) is given by

euma ¼
lm 0 0

0 �1
2lm 0

0 0 �1
2lm

0
BB@

1
CCA

DF

ð53Þ

lm is the maximum magnetostriction that can be reached by the
isotropic material. This parameter can be identified from experi-
mental measurements, but it can also be defined from the value of
the single crystal magnetostriction coefficient l100 or l111. In the
previous work [54] it has been shown that the definition of lm
depends on the material crystalline symmetry: lm ¼ 2=5l100 � ka for
positive magnetocrystalline constant materials (such as iron)
and lm ¼ 3=5l111 � kb for negative magnetocrystalline constant
materials (such as nickel). ka and kb depend on the elastic properties
of the single crystal [21] and on the hypotheses chosen for the
description of the material. For instance, if we choose uniform
stress (Reuss) hypotheses, we have ka ¼ kb ¼ 1, and if we choose
uniform strain (Voigt) hypotheses, we have ka ¼ 5ma=ð2maþ3mbÞ
and kb ¼ 5mb=ð2maþ3mbÞ, ma and mb being the cubic shear moduli of
the single crystal. For the sake of simplicity, we will choose ka ¼ kb
¼ 1, in further numerical applications.

The equivalent stress must now verify a discrete version of
Eq. (50) so that

X
a ¼ 1...6

expðAsreq : eaumþAsm0
~H � ~MaÞÞP

a ¼ 1...6

expðAsreq : eaumþAsm0
~H � ~MaÞÞ~Ma

¼
X

a ¼ 1...6

expðAsr : eaumþAsm0
~H � ~MaÞÞP

a ¼ 1...6

expðAsr : eaumþAsm0
~H � ~MaÞÞ~Ma

ð54Þ

x

y

Fig. 9. Domain assembly representative for the material submitted to magnetic

field and stress.
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The potential energy of a domain family is now

Wa ¼�m0
~H � ~Ma�r : euma ð55Þ

This energy term can be written for each of the six domain
families submitted to the multiaxial stress:

W1 ¼�m0H �Ms�sxx � lmþsyy �
lm
2

þszz �
lm
2

W2 ¼ m0H �Ms�sxx � lmþsyy �
lm
2

þszz �
lm
2

W3 ¼W4 ¼�syy � lmþðsxxþszzÞ �
lm
2

W5 ¼W6 ¼�szz � lmþðsxxþsyyÞ �
lm
2

It can be noticed that the shear stresses sxy, sxz and syz do not
appear in the result. After calculation, the right hand term of
Eq. (54) becomes

Ms

sinhðm0MsAsHÞ exp Aslm sxx�
syy

2
�szz

2

� �� �
AþBþC

~x ð56Þ

with

A¼ coshðm0MsAsHÞ exp Aslm sxx�
syy

2
�szz

2

� �� �

B¼ exp Aslm syy�sxx

2
�szz

2

� �� �

C¼ exp Aslm szz�sxx

2
�syy

2

� �� �
Considering the equivalent uniaxial stress, the potential energy of
a domain family is

Wa ¼�m0
~H � ~Ma�req : euma ð57Þ

We obtain the following energy terms for the six domain families:

W1 ¼�m0H �Ms�seq � lm

W2 ¼ m0H �Ms�seq � lm

W3 ¼W4 ¼ seq �
lm
2

W5 ¼W6 ¼ seq �
lm
2

After calculation, the left hand term of Eq. (54) becomes

Ms
sinhðm0MsAsHÞ expðAslmseqÞ

coshðm0MsAsHÞ expðAslmseqÞþ2 expð�1=2AslmseqÞ
~x ð58Þ

Expressions (56) and (58) can be rewritten respectively in

Ms
sinhðm0MsAsHÞ

coshðm0MsAsHÞþ
exp Aslm syy�

sxx

2
�szz

2

� �� �
þexp Aslm szz�

sxx

2
�syy

2

� �� �
exp Aslm sxx�

syy

2
�szz

2

� �� �
~x

ð59Þ
and

Ms
sinhðm0MsAsHÞ

coshðm0MsAsHÞþ
2exp �1

2Aslmsu

� �
expðAslmsuÞ

~x ð60Þ

seq being solution of Eq. (54), the equality of expressions (59) and
(60) leads to

exp
3

2
Aslmseq

� �
¼

2 exp Aslm sxx�
syy

2
�szz

2

� �� �
exp Aslm syy�sxx

2
�szz

2

� �� �
þexp Aslm szz�sxx

2
�syy

2

� �� � ð61Þ

and finally after few calculations

seq ¼ 2

3Aslm
ln

2 exp Aslm sxx�
syy

2
�szz

2

� �� �
exp Aslm syy�

sxx

2
�szz

2

� �� �
þexp Aslm szz�

sxx

2
�syy

2

� �� �
2
64

3
75 ð62Þ

This definition can be generalized to any frame (~h, ~t1, ~t2)
associated to the magnetic field direction ~h. We note k the
product Aslm as a material dependent parameter:

seq ¼ t~hs~h� 2

3k
ln

exp 3k
2

t~t1s~t1
� �

þexp 3k
2

t~t2s~t2
� �

2

2
4

3
5 ð63Þ

Considering the definitions of As and lm, and using the hypothesis
of uniform stress (ka¼kb¼1) we get

k¼ 6w0l100
5m0M

2
s

ð64Þ

for positive magnetocrystalline anisotropy materials and

k¼ 9w0l111
5m0M

2
s

ð65Þ

for negative magnetocrystalline anisotropy materials. w0 denotes the
initial anhysteretic susceptibility of the material, m0 the permeability
of vacuum and Ms the saturation magnetization of the material. This
definition of equivalent stress finally requires to know some relatively
usual material parameters and no supplementary adjusting parameter.
This new expression for the equivalent stress generalizes the devia-
toric expression (Eq. (33)) and is applicable to cases of more intense
loadings and/or highly magnetostrictive materials. The effect of stress
on magnetostriction (DE effect) is taken into account. An extension to
anisotropic materials is possible following the strategy developed in
Section 3.2. This new expression will be referred to as the generalized
equivalent stress in the following.

5.3. Discussion about the generalized equivalent stress

The properties that can be highlighted are very similar to the
properties of the deviatoric equivalent stress:

� in the case of a uniaxial stress applied in the direction of the
magnetic field, the equivalent stress is the applied stress;

� the definition can be applied to a fully multiaxial mechanical
loading, not only biaxial;

� any orientation of the stress tensor with respect to the
magnetic field can be considered;

� a hydrostatic pressure leads to an equivalent stress equal to
zero, in agreement with the noneffect of hydrostatic pressure
on magnetic behavior.

In the case of a biaxial mechanical loading with eigenstresses
(s1,s2), the deviatoric tensor is

s¼

2
3s1� 1

3s2 0 0

0 2
3s2� 1

3s1 0

0 0 � 1
3 ðs1þs2Þ

0
BB@

1
CCA ð66Þ

If ~h is aligned with direction ~e1 the equivalent stress is given by

seq ¼ 2

3
s1�

1

3
s2�

2

3k
ln

expðkðs2� 1
2s1ÞÞþexpðkð� 1

2s2� 1
2s1ÞÞ

2

" #

ð67Þ

that can be simplified into

seq ¼ s1�
2

3k
ln

exp 3k
2s2

� �þ1

2

" #
ð68Þ
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A direct plot of the generalized equivalent stress is not possible
since parameter k is material dependent. We observe that the
final expression is more or less complex depending on the stress
value along ~e2 axis:

� for s2 ¼ 0, seq ¼ s1;
� for jks251j, a Taylor expansion of exponential and logarithm

gives

seq � s1�
2

3k
ln

3k
2s2þ2

2

" #
� s1�

2

3k
ln

3k

4
s2þ1

	 

� s1�

1

2
s2

reducing to the deviatoric equivalent stress (no assumption is
necessary concerning the stress level along ~e1 axis). This
situation is illustrated in Fig. 10a (the adimensional ratio
seq=s0 is plotted as a function of s1=s0 and s2=s0). The
deviatoric equivalent stress can be seen as a particular case
of the generalized equivalent stress;

� for ks2b1, 1
2 can be neglected compared to the exponential.

We obtain the following estimation:

seq � s1�
2

3k
ln

exp 3k
2s2

� �
2

" #
� s1�s2þ

2ln2

3k

close to Schneider–Richardson proposal. This situation is
illustrated in Fig. 10b for positive values of s2 (the adimen-
sional ratio seq=s0 is plotted as a function of s1=s0 and s2=s0.
The Schneider–Richardson equivalent stress can be seen as a
particular case of the generalized equivalent stress;

� for ks25�1, the exponential becomes negligible. We obtain
the following estimation:

seq � s1�
2

3k
ln

1

2

� �
� s1þ

2ln2

3k

The criterion is now strongly associated to the value of s1. This
situation is illustrated by vertical lines in Fig. 10b for negative
values of s2 (the adimensional ratio seq=s0 is plotted as a
function of s1=s0 and s2=s0). This situation was not covered
by any criterion of literature;

� intermediate values of ks2 will give a continuous criterion
between the previous extremal solutions;

� a change of sign of k (i.e. change of sign of magnetostriction)
will give a symmetric plot with respect to ~e1 axis.

A comparison to experimental data is presented in the next section.

6. Comparison experiments-modeling—magnetic behavior of
Fe–Co thin sheet submitted to biaxial mechanical loading

The material used for experiments is a 49%Co–49%Fe–2%V
alloy delivered in 0.5 mm thick sheets format (industrial

denomination: AFK 502-R from Imphy Alloys). Cobalt-based
alloys are usually known to exhibit a strong saturation magneti-
zation (Ms ¼ 1:91� 106 A=m), that promotes high torque/weight
performances for aeronautic equipments. Experiments consist in
anhysteretic magnetic measurements carried out under uniaxial
and biaxial mechanical stress in homogeneous magnetic and
mechanical conditions. A full description of the two set-ups used
for measurements can be found in [54] for uniaxial set-up
(Fig. 11a) and in [35] for biaxial set-up (Fig. 11b).

6.1. Magnetic and magnetostrictive measurements under uniaxial

mechanical loading

The benchmark for magneto-mechanical measurements is
detailed in [54]. Measurements carried out are anhysteretic
(reversible) magnetic behavior M(H), ‘‘parallel’’ (parallel to the
magnetic field direction) and ‘‘perpendicular’’ (perpendicular to
the magnetic field direction) magnetostrictive behavior (resp. emJ
and em?).

2 The applied stress is positive (tension). Fig. 12 shows
the evolution of the magnetization curve with respect to the
applied stress: we observe a clear increase in susceptibility with
increasing stress. Corresponding magnetostrictive behavior has
been plotted in Figs. 13a and b. The behavior seems roughly
isotropic since perpendicular magnetostriction is negative and
about half the amplitude of parallel magnetostriction. Influence of
stress is also illustrated: tensile stress progressively saturates the
magnetostriction.

Measurements have been carried out on a sample cut along
the rolling direction. Measurements along the transverse direc-
tion (TD) give similar results. As expected from magnetostrictive
measurements, the magneto-mechanical behavior can be consid-
ered as isotropic.

6.2. Magnetic measurements under biaxial mechanical loading

These experimental results have already been published
in [35]. We recall the main results. Seventeen biaxial stress
conditions (s1, s2) have been tested, for stress level varying from
�60 to +60 MPa. The magnetic field is applied along direction 1.
Mechanical loading can be divided into parallel uniaxial tests
(s1a0,s2 ¼ 0), orthogonal uniaxial tests (s1 ¼ 0,s2a0), equi-
biaxial tests (s1 ¼ s2), and shear tests (s1 ¼�s2) in order to
map the stress plane.

Fig. 14 shows the evolution of the anhysteretic MðHÞ curve for
the parallel uniaxial situation (s1a0,s2 ¼ 0). Results are in
accordance with measurements carried out using uniaxial set-
up: improvement of the magnetization behavior with positive
stress. We observe a stronger opposite effect due to
compression. Fig. 15 shows the evolution of the anhysteretic
MðHÞ curve for the orthogonal uniaxial situation (s1 ¼ 0,s2a0).
The effect of the stress level is strongly reduced compared to the
previous situation. The sign of the stress is not a dominant
parameter since magnetic susceptibility is deteriorated whatever
the situation. The deterioration seems a little stronger with
positive stress. The equibiaxial situation (Fig. 16) is characterized
by a relative insensitivity to stress when the stress value is
positive (equibitraction). The equibicompression on the contrary
sharply deteriorates the magnetic behavior. The shear situation
(Fig. 17) is the worst situation for the magnetic behavior except
when s1 remains positive. The lowest susceptibility is reached
with s1 ¼�60 MPa and s2 ¼ þ60 MPa.
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Fig. 10. Adimensional iso-values of generalised equivalent stress (seq=s0)—for

k40 and (a) jks2j51; (b) jks2jb1.

2 The readers will find in [54] all experimental details in order to carry out

precise measurement of magnetostriction avoiding the difficulties due to the

tensile loading.
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A dominant influence of stress level along the axis of magnetic
measurement (s1) seems to be observed for equibiaxial (s1 ¼ s2)
and shear (s1 ¼�s2) conditions; it is especially sensitive when
the stress along the orthogonal axis is negative. This analysis also
applies for experiments carried out under uniaxial stress. We draw
the evolution of the secant susceptibility w¼M=H in the stress
plane in order to illustrate the main trends: w(s1,s2). Fig. 18a and b
plot w for H¼250 and 2500 A/m respectively. The level of magnetic
field does not seem a determinant factor. The tension-compression
asymmetry is easily perceptible on both graphs. The figures show
that a bitraction hardly changes the susceptibility while a bicom-
pression can divide it by two. A compression in a direction
perpendicular to the magnetic field has a weak effect, while a
tension notably decreases the susceptibility. The lowest values of w
are reached in the upper left side of the graph, corresponding to the
shear situation with negative s1.

6.3. Equivalent stresses validation by comparison to biaxial

experimental data

In this section, a validation of the several equivalent stress
proposals is proposed. Kashiwaya (K), Schneider and Richardson
(SR), Sablik et al. (S), deviatoric (d) and generalized (g) equivalent

stress proposals have been detailed in sections 2.2, 3.1 and 4.2.
The validation is based on a comparison to biaxial magneto-
mechanical measurements. The loading configuration consists in
a biaxial stress tensor r superimposed to a magnetic field ~H

aligned in the direction parallel to the first principal stress. This

Fig. 11. (a) Benchmark for magnetic and magnetostrictive measurements under tensile stress; (b) general view of the experimental apparatus for magnetic measurement

under biaxial stress loading.
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configuration is given by

r¼
s1 0

0 s2

 !
and ~H ¼ H

0

� �
ð69Þ

The magnetic property of interest for this comparison is the
magnetic susceptibility under stress. The validation process is
based on four steps:

1. The magnetic susceptibility under uniaxial stress needs to be
identified first. It has been collected from various sources
(Sections 5.1 and 5.2, and Ref. [50]) for samples exhibiting
the same composition. These different results are very con-
sistent. They have been plotted in Figs. 19 and 20 respectively
for an applied magnetic field of H¼250 and 2500 A/m. It is
reminded that the magnetic field H is applied in the direction
parallel to the – uniaxial – applied stress s. For modeling
purpose, the evolution of the susceptibility as a function of
stress has been interpolated, plotted as a full line in Figs. 19
and 20. The interpolation function w¼ pðsÞ will be used in the
following steps.

2. The predicted susceptibility under biaxial stress is then calcu-
lated. For K, SR and S and deviatoric equivalent stresses,
formulas (21)–(23) and (33) are applied directly. In the case
of the generalized equivalent stress, some material parameters
are necessary to apply Eq. (63). These material parameters can
be identified from unloaded measurements of Figs. 12 and 13:
lm � 65� 10�6, w0 � 3000 and Ms ¼ 1:91� 106 A=m. Once
each equivalent stress seq is calculated for a given multiaxial
stress r, the corresponding predicted susceptibility wp is
calculated using the polynomial interpolation: wp ¼ pðseqÞ.
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3. Experimental results for the susceptibility we under biaxial
stress need to be collected. Such biaxial magneto-mechanical
measurements have been detailed in Ref. [35] and recalled
in Section 5.2. They are reported in Fig. 18, for H¼250 and
2500 A/m.

4. The modeling results of step (2) are compared to independent
experimental results of step (3) by the calculation of an error
indicator. For each equivalent stress proposal the quantity e

(Eq. (70)) is calculated. The lower this indicator, the more
accurate the equivalent stress:

e¼ 100� jwp�wej
we

ð70Þ

Figs. 21 and 22 plot the error criterion e for K, SR, S, d and g
equivalent stresses respectively for H¼250 A/m and
H¼2500 A/m.

For all criteria except the generalized equivalent stress under
high magnetic field, the errors observed are higher in equibicom-
pression than for other loadings. In the case of a stress (s1,
s2)¼(�60 MPa, �60 MPa) and for a magnetic field H¼250 A/m,
the error is up to 635% for K and SR, 371% for S, 238% for d and
117% for g equivalent stress. For reading convenience the error

values have been truncated at 100% to highlight the prediction
out of the bicompression area. If the field is increased to
H¼2500 A/m, the error is up to 70% for K and SR, 57% for S, 50%
for d and 44% for g equivalent stress. In that case, the generalized
stress proposal exhibits higher error levels in the upper right part
of the plot, in an area of strong shear stress. The error values have
been truncated at 50% for reading convenience. Errors are lower
in that latter case because the effect of stress on the magnetic
behavior is less sensitive close to magnetic saturation (see for
instance Fig. 12).

The deviatoric stress had already been shown to provide a
significant improvement of the predicted susceptibility compared
to K, SR and S proposals [29]. This result could be reinforced by
taking into account the weak anisotropy of the material and
choosing the orthotropic version of the deviatoric equivalent stress
criterion. Compared to all previous proposals, adding a few material
dependent parameters (lm, w0 and Ms) in the equivalent stress
definition, the generalized equivalent stress is a significant
improvement for the definition of the magnetic susceptibility under
bicompression. These latter equivalent stress definitions make
conceivable the use of equivalent stress models even in the case
of bi-compressive mechanical loadings. Moreover it is to be recalled
that the definition of deviatoric and generalized proposals are
applicable for any multiaxial configuration—not only biaxial.

7. Conclusion

In this paper new proposals of equivalent stress for magneto-
mechanical behavior have been presented. Equivalent stress is
defined as the uniaxial mechanical loading, applied in the direc-
tion parallel to the applied magnetic field, that induces the same
effect on the magnetic behavior than the corresponding multi-
axial stress. The first proposal called ‘‘deviatoric equivalent stress’’
is defined thanks to an equivalence in magnetoelastic energy. The
second proposal called ‘‘generalized equivalent stress’’ is defined
thanks to an equivalence in magnetization for a given magnetic
field. This proposal can be seen as a generalization of the
deviatoric equivalent stress. Some stronger simplifications allow
on the other hand to build the Schneider and Richardson criterion.
The generalized equivalent stress has been constructed after
simplification of a full 3D magneto-elastic multiscale model,
neglecting the impact of magnetocrystalline energy and thanks
to a cubic reconstruction of an idealized isotropic distribution of
domains. It must be noticed that the deviatoric definition is easier
to use; it may be preferred when jks2j51 condition can be
assumed (s2 is the eigenstress orthogonal to the magnetization
direction).

Comparisons to experimental results carried out under biaxial
loading show that the generalized equivalent stress gives more
accurate predictions than the previous proposals. The criterion
reflects the major influence of the stress level along the magne-
tization axis, especially when stress along the second axis is
negative. The deviatoric and generalized equivalent stresses are
not restricted to biaxial mechanical loadings and do not require
any assumption on the magnetic field direction. The generalized
form accounts for the magnetostrictive and magnetic constants of
the material and thus reflects the different sensitivity of the
magnetic behavior to a mechanical loading depending on the
considered material.

This new definition can help to revisit and discuss some
previous results of the literature. The results of Pearson
et al. [27] and Maurel et al. [33] are accessible and can be re-
interpreted. Pearson et al. obtained maps of the relative variation
of the coercive field (%) in the biaxial stress plane for a pure
iron. Fig. 23a shows the corresponding results. Maurel et al.
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Fig. 19. Magnetic secant susceptibility of iron–cobalt as a function of uniaxial

stress for H¼250 A/m.
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Fig. 20. Magnetic secant susceptibility of iron–cobalt as a function of uniaxial
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plotted the evolution of a normalized initial permeability (ratio of
initial permeability under stress with initial permeability of the
unloaded material) in the biaxial stress plane for a 3%Si–Fe
electrical steel. Fig. 23b shows the corresponding results.
These results can be compared with the prediction of the general-
ized equivalent stress. Fig. 23c shows the equivalent stress
associated to a parameter k¼ 1:96� 10�8 m3 J�1 in adequation

with the two materials investigated (arbitrary units have
been chosen). The main difference with the experiments
reported in this paper is the low magnitude of lm estimated to
lm ¼ 10� 10�6. The variations of the equivalent stress in the
sheet plane seem to be in accordance with experimental results.
This simulation confirms the ability of prediction of the new
generalized equivalent stress.
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Complementary experiments are foreseen in order to validate
or extend the equivalent stress proposals:

� experiments involving a magnetic field direction out of the
mechanical eigenaxes;

� experiments involving measurement of the hysteresis losses
and magnetostriction;
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