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Finite Element Modeling of Magnetoelectric Sensors
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The magnetoelectric effect, stemming from piezoelectric and magnetostrictive materials composite, is studied. A model based on the
association of magnetoelastic and piezo-electric constitutive laws is presented. This model is implemented in a finite element formula-
tion and a comparison with analytical solutions for piezoelectric/magnetostrictive composite is realized. A magnetoelectric displacement

sensor is finally studied.

Index Terms—Finite element formulation, magnetoelectric sensors, magnetostriction, piezoelectric.

I. INTRODUCTION

MART materials such as magnetostrictive (MM) and piezo-

electric (PM) materials are usually used in a wide range of
electromechanical systems. The strong coupling between elec-
tromagnetic and mechanical properties in this type of materials
enables to control electric or magnetic (respectively mechan-
ical) behavior by mechanical (respectively electric or magnetic)
quantities. These materials are commonly employed separately
but they can also be used together in a composite design. The
presence of a magnetic field within a MM generates a magne-
tostriction strain, that transmitted to a PM, is associated to an
electric polarization. Conversely, an electric field in a PM can
create a modification of magnetization in a MM. This effect is
called “magnetoelectric” effect.

Analytical studies of this effect, considering small variations
of the fields, with MM/PM laminate composites as well as con-
ception of such structures have been proposed [1][2]. The design
of a novel generation of smart systems using this effect needs
models describing accurately their behavior associated to robust
modeling tools for solving coupled problems, in order to opti-
mize efficiently such structures.

A magnetoelastic model built from a thermodynamical
approach is presented. It is based on nonlinear constitutive laws
which present the mutual interaction between magnetic and
elastic properties. Piezoelectric constitutive laws, in the linear
assumptions, are detailed. From the minimization of functional
energy, finite element formulation of the magnetoelastic and
electroelastic problems are established. Specific considerations
allow to establish finite element formulation of magnetoelec-
tric problem. Validation of the formulation is realized with
comparison of analytical solutions of two MM/PM composite
structures. Finally, study of a magnetoelectric displacement
sensor is achieved.

II. MAGNETOELECTRIC MODELING

The behavior of active materials, when losses are neglected,
is given by the knowledge of the dependence of the electric flux
density d and the stress tensor o on the electric field e and the
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strain tensor s for PM, and of the magnetic field h and the stress
o on the magnetic flux density b and the strain s for MM

d(e, s) )
h(b, s). @

a(e,s)
o(b, s)
The definition of expressions (1) and (2) requires the use of

piezoelectric coefficients « [3] as well as piezomagnetic coeffi-
cients v [4]
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A. Electroelastic Behavior

PM are usually used around a polarization point. In this case,
all the material parameters are constant and the behavior is taken
linear. A simple integration of the piezoelectric coefficients (3)
gives the following expression [3] of the electroelastic behavior:

e t
oijle,s) = Ciikt Skl — Qg €k

di(e,8) = irt s11 + €5 € ®

where C° and €° are respectively the stiffness tensor at constant
electric field and the electrical permittivity at constant strain.
In linear piezoelectricity, the equations of linear elasticity are
coupled to the charge equation of electrostatics by the mean of
the piezoelectric coefficients.

B. Magnetoelastic Behavior

The magnetostrictive behavior is highly non linear, and this
non linearity has to be considered in the magnetoelastic con-
stitutive laws. The mechanical behavior law is written in the
framework of linear elasticity, using the decomposition of total
strain into elastic strain s® and magnetostriction strain s*, sg; =
s7; + sk, [5]. Besides, magnetostriction strain induced by a
magnetic field is assumed to depend only on the magnetic flux
density. With these assumptions Hooke’s law is expressed as
follows:

0ij(b,5) = Cijri(sr1 — 53;(D)) (6)

with sy the total strain tensor and C; j; the usual stiffness tensor
defined, in the case of isotropic material, by

E* v* 1
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where FE* v* and ¢ are respectively Young’s modulus,
Poisson’s ratio and the Kronecker’s symbol.

From the definition of the piezomagnetic coefficients (4), in-
tegration of both terms between s* and s enables to express the
magnetic behavior law h(b, s). This law can be written by intro-
ducing a coercive magnetic field 2° which describes the effect
of an applied stress

ost (b
hi(0,) = B2(b, ) — Cuanp 2 (g — st

bi
= hY(b,s") — hS(b,s) (8)
h$(b, s) is the magnetic field induced along 7 axis by stress at
given magnetic flux density and h{ (b, s*) is the magnetic field
at free stress depending only on magnetic flux density.

C. Magnetostriction Strain Model

The magnetostriction strain tensor (37 /,sil,siz) is ex-
pressed in the reference frame of the magnetic induction. The
component s’; ; can be approximated as a polynomial func-
tion versus the magnetic flux density [6]. Besides, assuming
magnetostriction phenomena isochore and isotropic, the mag-
netostriction strain tensor can be expressed in the reference
frame of the magnetic induction (b,/,b1,,b.,):

N 3”
st = 3 BB st (b) = st (b) = _%, 9)
n=0

To take into account the magnetic flux density distribution,
the magnetostriction strain tensor in the material frame is given
by the following indicial form:

1
I _ 2n 2
sh(b) = 5 > B b7 (3bkby — brib?).

n=0

(10)

From the expression of the magnetostriction strain tensor, the
coercive magnetic field (8) can be expressed as the product of
an ‘equivalent’ reluctivity tensor with the magnetic flux density

i (b, s) = vi;(b, s)bj. (11)

Due to the applied stress, the ‘equivalent’ reluctivity tensor
is anisotropic. Its expression can be found in [6]. A reasonable
first approximation for the magnetostriction strain tensor can be
obtained by neglecting the terms up to N = 1.

III. FINITE ELEMENT FORMULATION

A. Magnetoelastic Problem

In the static case, the finite element formulation integrating
the magnetostrictive phenomena can be established from a min-
imization of the functional energy F in terms of b and s:

E(b,s)=W(b,s)—T (12)

where W (b, s) and T are respectively the magnetoelastic energy
and the work of magnetic and mechanical sources, defined by

b s
W(@s):/ﬂ (/0 ho(b’,s“)db'—i—/u o(b,s’)ds’)dQT (13)
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Fig. 1. The studied domains.
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with a the magnetic vector potential, u the vector displacement,
j the current density, f* the volume force density and n the
normal vector. Boundary conditions associated to the magne-
tomechanical problem are of two types

hxn=0 on I} J-n:fron Iy

b-n=0 on I u=0 on I,

wherel', =I',ul'y andI', = I',UI', are the boundaries of the

study domains defined by Qp = Qpr UQg and Qpp = Q,,, Uy

[Fig. 1(a)]. fT is associated to surface force densities.
Application of variational principles, gives the following

magnetic and mechanical formulation associated to arbitrary

variations 6, and 6,,:

/ Vxéa[l/]andQT—l—/ 8o (hxn)dTy,
Qrp Ty

= / V X 84 - he(b, s) dQr + / 0g + 7 dQp (15)
Qo Qr

/le(éu)[c]s Y + 9, G/QT (/Ob ROV, su)db'> dQT)

:/ 5(64)[C]s"dS +/ 5u~deQ+/ u-frdl,.
Q. Q. r,
(16)

The magnetic vector potential is discretized using edge and
nodal elements, respectively in 3D and 2D cases, while the dis-
placement vector is discretized with nodal elements. From this
discretization, the algebraic equation system is defined by

[M](a) = (J) + (J°(b, 5))
[K)(u) = (F7) + (F™ (b)) + (F" (D). (17)
The right-hand side of each equation (17) can be interpreted
as a coercive current density .J€ representing the effect of an ap-
plied stress and the ‘equivalent’ nodal magnetostriction forces
F* resulting from an applied magnetic field. F™! are the nodal
magnetic forces determined by the local derivative of magnetic
energy [7]. The obtained algebraic system is nonlinear. It can be
solved by an iterative procedure based on fixed point algorithm,
where the nonlinearity due to magnetic properties and magne-
tostriction effects is placed at the right-hand side of each equa-
tion. In this case, the magnetic [M] and mechanical [K] rigidity
matrices are calculated only at the first iteration.
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B. Electroelastic Problem

Electromechanical problem in the static condition can be de-
fined, in a similar way, by minimization of a functional energy.
This one, integrating piezoelectric phenomena, leads to solve
the following equality of the electrical and mechanical problems
associated to the variations 6 and du [8] [see (18) and (19)]

/ Vb |a]sdQ, — / Vo [e] Ve dQ,
Q. Qe

- / 5 (d-n)dT, (18)
|

/ s(8u) [C] 5 O, + / s(5u) [a]' Vip dQ,
Q2

),
Boundary conditions relative to the electroelastic problem,

where Q, = Q. UQy and ', = 'y U T [Fig. 1(b)], are defined
by

e

Su - fd9, _/ bu- fYdl, =0. (19)

P Iy

d-n=0on I'y
u =0 on [,.

exn=0 on I,

o-n=f"onT,

After discretisation with nodal elements, the algebraic equa-
tion system relative to the electroelastic problem is

e 1801)- (2

—[Kug]" [Kgo] | \ ¢ Q
with ¢ the electric potential and () the vector of the nodal elec-
tric charges. F' can be taken equal to the external forces /. For

piezoelectric material the electrostatic forces, due to the form
effect, can be neglected.

(20)

C. Magnetoelectric Problem

The sensor configuration of the piezoelectric materials is a
particular case. In this situation, the total electrical charge @)
can be considered equal to zero. The second equation of (20) is
simplified and it is possible to write

(4) = [Kpo] " [Kug]' (u)
[K] = [Kuu] + [Ku¢>][Kd>d>]_1[KU¢]t-

2
(22)

Equation (22) gives, for the piezoelectric material, the ef-
fect of an equivalent piezoelectric stiffness induced by elec-
tric potentials on the sensor electrodes. It allows to consider
the influence of the inverse piezoelectric effect in the global
structure rigidity matrix during the mechanical resolution of a
magnetomechanical problem. The rigidity matrix associated to
piezoelectric material has to be modified considering (22) in the
mechanical equation of the magnetomechanical problem (17).
Consequently, magnetoelectromechanical problems are coupled
into a single magnetomechanical code. Electrostatic potential is
obtained after convergence of the magnetomechanical problem
by use of (21).

IV. MODEL VALIDATION

In order to validate the formulation, let us first consider
two composite structures. The first one is a MM/PM bilayer
[Fig. 2(a)], respectively of FeCo and PZT materials, while the
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Fig. 2. Two configurations of MM/PM composite.

second is a multilayer with one MM and two PM with the same
materials [Fig. 2(b)].

A. Analytical Solution

To obtain an analytical solution, some considerations are
required. First, one dimension (along x axis) is significantly
longer than the others, second, Kirchhoff assumption is used.
Moreover, the volume of PM and MM are assumed identical
(see Fig. 2). This gives the following composite strain expres-
sion versus y distance:

5(y) = 50— 2 (23)
T
where sg is the mid plane strain and r the composite curvature.
From the mechanical balance equations, forces and moments,
equations closing PM strain to MM strain relative to the multi-
layer (24) and the bilayer (25) are defined by

spzt El

=1 24
sH Ei+ E, 24)
SPZt E1 (E1 + Ez) (25)

st B2 + B2+ 14E1 Es

where F/1 and E5 are respectively the Young’s modulus of the
PM and MM. From the knowledge of strains, electric potential is
deduced. To obtain these results, the inverse piezoelectric effect
is neglected.

B. Comparison of Analytical and Numerical Solutions

PM and MM are made respectively of EB10 ceramic and
FeCo ferromagnetic material. It appears that the electric po-
tential (Fig. 3) is higher for the multilayer than for the bilayer,
considering the same quantities of piezoelectric material in the
two structures. Besides, it can be shown that the ratio between
electric potential of the bilayer (V3) and the multilayer (V3),
for the analytical and numerical solutions, are respectively of
Vi / Vi = 0.295 and V;,/V; = 0.3. Analytical and numerical so-
lutions are in good agreement.

V. MAGNETOELECTRIC DISPLACEMENTS SENSOR

Taking the MM/MP multilayer as a basis, design of novel
smart material structures is possible. One of these, which will be
taken as an example, is a magnetoelectric displacements sensor
[9], intended to detect the displacement of ferromagnetic ob-
jects. This sensor is constituted of a laminate composite asso-
ciated to two iron yokes and a permanent magnet (Fig. 4). The
laminate composite is a MM plate bonded with two PM plates.
Magnetic orientation and electric polarization are orthogonal, as
indicated in Fig. 4. Both sides of the composite are stuck (not
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Fig. 3. Electric potential versus magnetic flux density.
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Fig. 4. Magnetoelectric displacements sensors.
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Fig. 5. Magnetic flux distribution (left) and its change with ferromagnetic plate
displacement (right).

bonded) to the iron yokes with magnetic forces via flux path.
In this structure, small part of the magnetic flux is derived be-
tween the mobile ferromagnetic plate and the MM (Terfenol-D).
Thereafter, small variations of the air gap change the magnetic
flux inside the MM, which is associated to magnetostriction
strain variation. This strain is then responsible for an electric
field. Thus, the magnetoelectric device converts the displace-
ment into a voltage on the electrodes (Fig. 5). The multilayer
composite has advantage to reduce bending deformation due to
magnetostriction.

We intend to study the sensitivity of the sensor linked to the
air gap variations. For that, in a first time MM is considered at
free stress. Due to the magnetic flux distribution, electric poten-
tial are not equal into the two PM [Fig. 6(a)]. A small bending
effect is present. In comparison with the experimental results,
sensitivity of the lower PM is in good adequacy [Fig. 6(b)]. Dif-
ferences are observed for the small air gaps. If the Terfenol-D is
pre-stressed, magnetostriction strain developed is more impor-
tant [6]. If we consider that, with an external set, the Terfenol-D
layer of the sensor can be pre-stressed, it results in an increase
of the electric potential [Fig. 6(a)] and a higher sensitivity of the
sensor [Fig. 6(b)].

This analysis allows a good description of the operating mode
of the sensor, and the developed model can be useful for design
and optimization of new structures.
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Fig. 6. Response of the magnetoelectric displacements sensor.

VI. CONCLUSION

A finite element model has been developed in order to study
the magnetoelectric effect, stemming from magnetostrictive and
piezoelectric materials composite. Standard piezoelectric be-
havior laws are considered, while the coupling of magnetic and
elastic properties is ensured by nonlinear constitutive laws. Spe-
cific considerations allow a coupling between the magnetoe-
lastic and the electroelastic problems, such that only the reso-
lution of a magnetoelastic problem is necessary. To validate the
approach, a comparison between analytical and numerical solu-
tions of multilayers is globally satisfactory. Finally this model
is successfully used to analyze a new device of magnetoelectric
displacement sensor, based on the variations of the electric po-
tential due to air gap changes. Some discrepancies are observed
with experimental results. They may be due to the imperfect def-
inition of mechanical boundary conditions. The properties of the
permanent magnet may also not be identical to the experimental
device and the influence of the PM sticking with the MM has not
been taken into account.
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