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A B S T R A C T

The mechanical state strongly influences the magnetic response of ferromagnetic materials. In this paper,
the effect of time-varying mechanical stresses on magnetic behavior is modeled by combining a vector-play
model and a multiscale approach. The approach incorporates the influence of the crystallographic texture.
The model is applied to a polycrystalline low-carbon steel (DC04). Uniaxial measurements are used to
identify the dissipation parameters. The model is further validated under complex uniaxial magneto-elastic
loading conditions, different from those used for parameter identification, including simultaneous variations
of magnetic field and stress. To the best of our knowledge, the proposed approach is the first multiaxial
magneto-elastic hysteresis model able to describe the response of a magnetic material to simultaneously varying
magnetic field and stress and validated under such loading conditions.
1. Introduction

The magnetic behavior of ferromagnetic materials is very sensi-
tive to the application of mechanical loadings. The magneto-elastic
couplings have been characterized mainly under uniaxial static stress
(e.g. [1–11]), and sometimes under multiaxial static stress (e.g. [12–
15]). Moreover, experimental measurements under uniaxial dynamic
stress [16–23] also show non-linear and hysteretic magnetic response.
The sensitivity of the magnetic response to dynamic stress is known
as piezomagnetic behavior, and can be used to design force sensors
and actuators [24–26], as well as in non-destructive testing meth-
ods [27,28]. Most approaches for magneto-elastic hysteresis modeling
require that either stress [9,29,30] or magnetic field [31,32] are main-
tained constant. However, ferromagnetic materials in electromagnetic
devices are subjected to complex loading conditions, with simultaneous
variations of the magnetic field and mechanical stress. A model includ-
ing this intricate coupled behavior is required for accurate design of
electromagnetic devices.

Recently, an energy-based vector-play hysteresis model was pro-
posed to describe the effect of multiaxial magneto-elastic loading con-
ditions on the magnetic response of magnetic materials [30,33]. The
model relies on a thermodynamic approach, decomposing the magnetic
field into reversible and irreversible parts. The reversible field is re-
lated to a thermodynamic reversible process, whereas the irreversible
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France.
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field defines the dissipation. Nevertheless, this approach is limited to
magneto-elastic loadings with static stress. This work is an extension of
this previous energy-based vector-play model to consider the influence
of time-varying mechanical loadings. Inspired by the decomposition
of the magnetic field, an irreversible stress is introduced, which cap-
tures the dissipation due to stress variations. Moreover, in order to
describe the strong effect of crystallographic texture on piezomagnetic
loops [19], the vector-play model is associated with a simplified texture
multiscale approach [34]. Using material parameters identified from
simple uniaxial measurements, the model is applied to describe the
magnetic behavior under more complex uniaxial magneto-elastic con-
figurations. The results are compared with measurements performed
on low-carbon steel DC04. Lastly, the proposed approach is analyzed
in terms of thermodynamic consistency, highlighting its strengths and
limitations.

2. Modeling

The approach is based on a recently proposed model for mag-
netic hysteresis of ferromagnetic materials under magneto-elastic load-
ings [30]. To take into account texture effects, a simplified texture
multiscale model (STMSM) for the reversible behavior [34] is used
and combined with an energy-based hysteresis approach [35]. The
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modeling can be split into reversible (anhysteretic) and irreversible
(hysteretic) behavior.

2.1. Reversible behavior

To model the reversible behavior, three scales are considered: the
domain scale (denoted by the index 𝛼), the grain scale (denoted by
the index 𝑔), and the polycrystal (or macroscopic) scale. At the domain
scale, the magnetization �⃗�𝛼 and magnetostriction strain tensor 𝝐 𝜇

𝛼 of
domain family 𝛼 with orientation �⃗� are written as:

⃗ 𝛼 = 𝑀𝑠�⃗� with �⃗� =
∑

𝑖
𝛼𝑖𝑒𝑖 (1)

𝝐 𝜇
𝛼 = 3

2

⎡

⎢

⎢

⎢

⎢

⎣

𝜆100
(

𝛼21 −
1
3

)

𝜆111𝛼1𝛼2 𝜆111𝛼1𝛼3
𝜆111𝛼2𝛼1 𝜆100

(

𝛼22 −
1
3

)

𝜆111𝛼2𝛼3
𝜆111𝛼3𝛼1 𝜆111𝛼3𝛼2 𝜆100

(

𝛼23 −
1
3

)

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

xpressed in the orthonormal vector basis
(

𝑒1, 𝑒2, 𝑒3
)

that defines the
rystal coordinate system. 𝑀𝑠 is the saturation magnetization. 𝜆100 and
111 are the magnetostriction constants. The free-energy density 𝑔𝛼 at
he domain scale is written as [36]:

𝛼 = 𝑔𝑚𝑎𝑔𝛼 + 𝑔𝑒𝑙𝛼 + 𝑔𝑎𝑛𝛼 (3a)
𝑚𝑎𝑔
𝛼 = −𝜇0�⃗�𝛼 ⋅ �⃗� (3b)
𝑒𝑙
𝛼 = −𝝈 ∶ 𝝐 𝜇

𝛼 (3c)

𝑔𝑎𝑛𝛼 = 𝐾1
(

𝛼21𝛼
2
2 + 𝛼22𝛼

2
3 + 𝛼23𝛼

2
1
)

+𝐾2 𝛼
2
1𝛼

2
2𝛼

2
3 , (3d)

with �⃗� the magnetic field, 𝝈 the second-order stress tensor, and
𝜇0 the vacuum permeability. 𝐾1 and 𝐾2 are the magneto-crystalline
anisotropy constants. The operator ∶ represents the double-dot product.

With the definition of 𝑔𝛼 , the volume fraction of a domain family 𝛼
is evaluated using a Boltzmann relation [37]:

𝑝𝛼 =
exp

(

−𝐴𝑠 𝑔𝛼
)

∑

𝛼 exp
(

−𝐴𝑠 𝑔𝛼
) , (4)

with 𝐴𝑠 a material parameter. At the grain scale, the magnetization �⃗�𝑔
and magnetostriction strain 𝝐 𝜇

𝑔 are evaluated by the weighted sum over
all the possible domain orientations:

�⃗�𝑔 =
∑

𝛼
𝑝𝛼�⃗�𝛼 and 𝝐 𝜇

𝑔 =
∑

𝛼
𝑝𝛼𝝐 𝜇

𝛼 . (5)

The set of possible domain orientations is defined through the nodes
of an icosphere (2562 orientations) [34]. The macroscopic magnetiza-
tion �⃗� and magnetostriction strain 𝝐 𝜇

𝑔 are then calculated by a volume
average over all grains:

�⃗� =
∑

𝑔
𝑝𝑔�⃗�𝑔 and 𝝐 𝜇 =

∑

𝑔
𝑝𝑔𝝐 𝜇

𝑔 , (6)

with 𝑝𝑔 the proportion of each grain.

2.2. Irreversible behavior under variable field and constant stress

In the energy-based model approach under constant mechanical
loadings [30], the magnetic field �⃗� is decomposed into reversible �⃗�𝑟𝑒𝑣
and irreversible parts, with �⃗� = �⃗�𝑟𝑒𝑣 + �⃗�𝑖𝑟𝑟. The reversible field �⃗�𝑟𝑒𝑣
is related to a reversible thermodynamic process. The irreversible field
�⃗�𝑖𝑟𝑟 is related to the dissipation process. The magnetization �⃗� and the
magnetostriction strain 𝝐 𝜇 are given by the reversible model evaluated
at the applied stress 𝝈 and reversible field �⃗�𝑟𝑒𝑣:

�⃗�(𝝈, �⃗�𝑟𝑒𝑣) and 𝝐 𝜇(𝝈, �⃗�𝑟𝑒𝑣). (7)

An approximate explicit solution of the energy-based model results
⃗
in a vector-play approach. In this case, the reversible field 𝐻𝑟𝑒𝑣 is

2 
Fig. 1. Mechanical analogy of the magnetic hysteresis behavior.

Fig. 2. Mechanical analogy of the magnetic hysteresis behavior considering 𝑁-cells.

updated at each time step by [35]:

�⃗�𝑟𝑒𝑣 =

⎧

⎪

⎨

⎪

⎩

�⃗�𝑟𝑒𝑣(𝑝) if ‖�⃗� − �⃗�𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝐻

�⃗� − 𝜅𝐻
�⃗� − �⃗�𝑟𝑒𝑣(𝑝)

‖�⃗� − �⃗�𝑟𝑒𝑣(𝑝)‖
otherwise,

(8)

with �⃗�𝑟𝑒𝑣(𝑝) the previous value of the reversible field, and 𝜅𝐻 the
pinning field, which acts as a threshold and controls the irreversible
process. The energy-based hysteresis model is formulated through an
analogy of the magnetic hysteresis with a mechanical dry-friction sys-
tem [35,38]. As illustrated in Fig. 1, irreversible behavior of magneti-
zation �⃗� is allowed as the magnetic field �⃗� reaches the threshold –
the pinning field 𝜅𝐻 – of the irreversible field �⃗�𝑖𝑟𝑟.

The modeling of the first magnetization curve, symmetric and asym-
metric minor loops can be performed by considering a discrete distri-
bution of pinning fields [35,39]. In this case, the weight 𝜔𝑘 of each
pinning field is introduced and verifies:
𝑁
∑

𝑘=1
𝜔𝑘 = 1, (9)

with 𝑁 the total number of pinning fields. The reversible field update
(8) in a multi-pinning fields context is given by:

�⃗�𝑘
𝑟𝑒𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�⃗�𝑘
𝑟𝑒𝑣(𝑝) if ‖�⃗� − �⃗�𝑘

𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘
𝐻

�⃗� − 𝜅𝑘
𝐻

�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)

‖�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)‖

otherwise.
(10)

Fig. 2 illustrates the mechanical analogy of the magnetic hysteresis.
In this case, several dry-friction systems or cells are connected in series,
driven by the same magnetic field. Each cell is characterized by a
pinning field 𝜅𝑘

𝐻 and a weight 𝜔𝑘. The first cell (with 𝜅𝑘
𝐻 = 0) represents

the reversible bending of the Bloch walls [35].
The total magnetization �⃗� and magnetostriction strain 𝝐 𝜇 are

evaluated from the weighted sum of each cell contribution:

�⃗� =
𝑁
∑

𝑘=1
𝜔𝑘�⃗�𝑘 with �⃗�𝑘 = 𝑀𝑎𝑛(�⃗�𝑘

𝑟𝑒𝑣,𝝈)

𝝐 𝜇 =
𝑁
∑

𝜔𝑘𝝐 𝜇,𝑘 with 𝝐 𝜇,𝑘 = 𝜖𝜇𝑎𝑛(�⃗�
𝑘
𝑟𝑒𝑣,𝝈),

(11)
𝑘=1
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Fig. 3. Simplified schematic of the algorithm of the model under variations of field
and constant stress. The material parameters are indicated in red.

𝑀𝑎𝑛 and 𝜖𝜇𝑎𝑛 are the anhysteretic magnetization and magnetostric-
tion strain, respectively, evaluated from the multiscale approach.

The pinning fields distribution controls the coercive field of a hys-
teresis loop. To capture the stress effect in the coercive field, the
following scaling of the pinning field is proposed [30]:

𝜅𝑘
𝐻 (𝝈) = 𝜅𝑘

𝐻 (𝟎)
𝐻𝑐 (𝜎𝑒𝑞)
𝐻𝑐 (𝟎)

, (12)

with 𝜅𝑘
𝐻 (𝟎) the pinning field for the stress-free case, 𝐻𝑐 (𝟎) the stress-

free coercive field and 𝐻𝑐 (𝜎𝑒𝑞) the coercive field under stress. 𝜎𝑒𝑞 is an
equivalent stress, defined by [40]:

𝜎𝑒𝑞 =
3
2
ℎ⃗𝑡

(

𝝈 − 1
3
tr(𝝈)𝑰

)

ℎ⃗, (13)

where ℎ⃗ is a unit vector that defines the direction of �⃗� , ℎ⃗𝑡 is its
ranspose and tr(𝝈) is the trace of the stress tensor. 𝜎𝑒𝑞 is a fictitious
calar stress which allows to capture – in a simplified manner – the
ffect of multiaxial stress on the magnetic behavior.

A schematic of the magneto-elastic vector-play model is presented
n Fig. 3. In the first block, the reversible field is updated according to
10). Next, the reversible field �⃗�𝑟𝑒𝑣 and the stress 𝝈 serve as input of
he multiscale approach. The magnetization �⃗� and magnetostriction
train 𝝐 𝜇 are the output of the model, and are solved at each loading
tep.

.3. Irreversible behavior under variable stress and constant field

The modeling of the magnetic dissipation due to variations in
echanical loading and under static magnetic field is performed using a

imilar approach as presented in Section 2.2. In this case, the following
echanical decomposition is proposed:

= 𝝈𝑟𝑒𝑣 + 𝝈𝑖𝑟𝑟, (14)

ith 𝝈𝑟𝑒𝑣 and 𝝈𝑖𝑟𝑟 the reversible and irreversible stresses, respec-
ively. Inspired from the vector-play approximation to the reversible
ield [35], an explicit update of the reversible stress is defined:

𝑟𝑒𝑣 =

⎧

⎪

⎨

⎪

⎩

𝝈𝑟𝑒𝑣(𝑝) if ‖𝝈 − 𝝈𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝜎
𝝈 − 𝜅𝜎

𝝈 − 𝝈𝑟𝑒𝑣(𝑝)

‖𝝈 − 𝝈𝑟𝑒𝑣(𝑝)‖
otherwise, (15)

with 𝜅𝜎 the pinning stress, and 𝝈𝑟𝑒𝑣(𝑝) the previous value of the re-
versible stress. The norm operator of a second-order tensor 𝑿 is evalu-
ated by: ‖𝑿‖ =

√

𝑿 ∶ 𝑿.
Following the same notion presented in Section 2.2, a discrete

distribution of pinning stresses is introduced. Each cell is defined by a
weight 𝜔𝑘 and a pinning stress 𝜅𝑘

𝜎 . In this situation with a distribution
of pinning stresses, the explicit update of 𝝈𝑘

𝑟𝑒𝑣 is:

𝝈𝑘
𝑟𝑒𝑣 =

⎧

⎪

⎨

⎪

⎩

𝝈𝑘
𝑟𝑒𝑣(𝑝) if ‖𝝈 − 𝝈𝑘

𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘
𝜎

𝝈 − 𝜅𝑘
𝜎

𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)

‖𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)‖

otherwise.
(16)

For each pinning stress 𝜅𝑘
𝜎 , a magnetization �⃗�𝑘 and a magnetostric-

ion strain 𝝐 𝜇,𝑘 can be calculated. The total magnetization �⃗� and
3 
Fig. 4. Simplified schematic of the algorithm of the model under stress variations and
constant field. The material parameters are indicated in red.

Fig. 5. Impact of a discrete distribution of pinning stresses on the strain–stress curve.
Equivalent single-crystal isotropic material with parameters: 𝑀𝑠 = 1.71 MA/m, 𝜆𝑠 = 21
pm, 𝐾1 = 𝐾2 = 0. One cell parameters: 𝜅𝜎 = 20 MPa, 𝜔 = 1. Five cell parameters:
𝜎 = [0; 5; 15; 22; 26; 34] MPa, 𝜔𝑘 = [0.05; 0.1; 0.25; 0.25; 0.2; 0.15].

agnetostriction strain 𝝐 𝜇 are evaluated from a weighted sum of each
ontribution by:

⃗ =
𝑁
∑

𝑘=1
𝜔𝑘�⃗�𝑘 with �⃗�𝑘 = 𝑀𝑎𝑛(�⃗�,𝝈𝑘

𝑟𝑒𝑣)

𝜇 =
𝑁
∑

𝑘=1
𝜔𝑘𝝐 𝜇,𝑘 with 𝝐 𝜇,𝑘 = 𝜖𝜇𝑎𝑛(�⃗�,𝝈𝑘

𝑟𝑒𝑣).

(17)

A simplified schematic of the approach is presented in Fig. 4. Under
constant magnetic field, the magnetic dissipation is only due to stress
ariations. The reversible stress 𝝈𝑘

𝑟𝑒𝑣 and the field �⃗� serve as input of
he anhysteretic multiscale model. After the weighted sum operation
f (17), the total magnetization �⃗� and magnetostriction 𝝐 𝜇 stress are
pdated at each time step.

To illustrate the influence of a distribution of pinning stresses on
he magnetic behavior, consider the field-free case presented in Fig. 5,
n which uniaxial stress is applied along longitudinal direction. For
his simplified case, the macroscopic behavior is defined by a fictitious
sotropic single crystal such that crystallographic texture effects are
eglected. In the single cell example, the longitudinal component of
he magnetostriction strain equals zero until the pinning stress (𝜅𝜎 =
0 MPa) is reached. Then, longitudinal magnetostriction variations
ccur, following the anhysteretic behavior shifted along the stress-axis.

Considering now a distribution of pinning stresses consisting of
cells (𝑁 = 3), the longitudinal magnetostriction strain gradually

ncreases, following the thresholds defined by the pinning stresses, as
hown in Fig. 5. It is also noted that by increasing the number of
inning stresses, the first magnetization curve can be refined. Such an
nalysis of the impact of the pinning stress on the magnetic response
an also be made in the 𝐵(𝜎) plane (piezomagnetic behavior).

.4. Irreversible behavior under simultaneous variations of magnetic field
nd stress

In a more general case, in which variations in both field and
tress are allowed, the magnetization �⃗� and magnetostriction strain
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Fig. 6. Simplified schematic of the algorithm of the model. The material parameters
are indicated in red.

𝝐 𝜇 dependencies are written in terms of the reversible magnetic field
�⃗�𝑟𝑒𝑣 and the reversible stress 𝝈𝑟𝑒𝑣 by:

�⃗�(𝝈𝑟𝑒𝑣, �⃗�𝑟𝑒𝑣) and 𝝐 𝜇(𝝈𝑟𝑒𝑣, �⃗�𝑟𝑒𝑣). (18)

In a multicell case, each cell is now characterized by a pinning stress
𝜅𝑘
𝜎 , a pinning field 𝜅𝑘

𝐻 , and a weight 𝜔𝑘. The same weight is applied
for both magnetic and mechanical pinning parameters distributions,
simplifying the modeling implementation and the hysteresis parameters
identification.

The explicit update of reversible stress 𝝈𝑘
𝑟𝑒𝑣 is given by:

𝝈𝑘
𝑟𝑒𝑣 =

⎧

⎪

⎨

⎪

⎩

𝝈𝑘
𝑟𝑒𝑣(𝑝), if ‖𝝈 − 𝝈𝑘

𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘
𝜎 | sign(‖

∙
𝝈‖)|

𝝈 − 𝜅𝑘
𝜎

𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)

‖𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)‖

| sign(‖
∙
𝝈‖)|, otherwise,

(19)

with
∙
𝝈 the time-derivative of the mechanical stress. The sign function is

introduced such that it ensures a null irreversible stress – no dissipation
– in the case of constant mechanical loading. Likewise, the explicit
update of �⃗�𝑘

𝑟𝑒𝑣 is given by:

�⃗�𝑘
𝑟𝑒𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�⃗�𝑘
𝑟𝑒𝑣(𝑝), if ‖�⃗� − �⃗�𝑘

𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘
𝐻 | sign(‖

∙
�⃗�‖)|

�⃗� − 𝜅𝑘
𝐻

�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)

‖�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)‖

| sign(‖
∙
�⃗�‖)|, otherwise,

(20)

with
∙
�⃗� the time-derivative of the magnetic field, and the sign function

enforcing zero dissipation in the case of static field. The magnetization
�⃗� and the magnetostriction strain 𝝐 𝜇 are evaluated by:

�⃗� =
𝑁
∑

𝑘=1
𝜔𝑘�⃗�𝑘 with �⃗�𝑘 = 𝑀𝑎𝑛(�⃗�𝑘

𝑟𝑒𝑣,𝝈
𝑘
𝑟𝑒𝑣)

𝝐 𝜇 =
𝑁
∑

𝑘=1
𝜔𝑘𝝐 𝜇,𝑘 with 𝝐 𝜇,𝑘 = 𝜖𝜇𝑎𝑛(�⃗�

𝑘
𝑟𝑒𝑣,𝝈

𝑘
𝑟𝑒𝑣).

(21)

The schematic of the algorithm of the hysteresis model for a general
magneto-elastic loading is shown in Fig. 6.

The main algorithm of the model is shown in Appendix A.

3. Experimental setup

The material studied in this work is a low-carbon steel DC04. The
crystallographic texture for this material is obtained from electron
back-scattering diffraction (EBSD) and is shown in Fig. 7 (gray scale).
A set of 770 grain orientations is extracted from this measurement. It
can be approximated by a perfect ⟨111⟩ fiber described by 16 grain
orientations with equal proportions, as shown in Fig. 7 (blue markers).

The magneto-mechanical measurements are performed on the ex-
perimental setup shown in Fig. 8. A Zwick/Roell Z030 machine applies
mechanical loading with the possibility to control force or displace-
ment. A Teslameter FM302 and a transverse Hall probe 20 mT AS-VTP
measure the magnetic field in the measurement area as shown in
Fig. 8. From the Faraday–Lenz law, a voltage is induced in the B-coil,
whose numerical integration results in the measured induction. The
drift in induction is corrected by linear regression for each test. The
4 
Fig. 7. Pole figures for a DC04 steel (stereographic projection) with 770 orientations
(gray scale) superimposed with projections for a perfect ⟨111⟩ fiber with 16 orientations
(blue markers).

Fig. 8. Magneto-mechanical setup.

Fig. 9. Loading conditions in a piezomagnetic test (left) and an example of the
corresponding piezomagnetic loop (right).

longitudinal and transverse magnetostriction strains are measured with
a strain gauge rosette glued on the surface as shown in Fig. 8. More
details on the experimental bench are presented in [41].

The piezomagnetic loops are measured as follows: the current is
set as an exponentially decaying sine wave superimposed to a bias
level, with frequency of 1 Hz. After stabilizing the current at the
bias level, a cyclic force is applied with a speed of 0.5 mm/s and
frequency of 11.5 mHz. Fig. 9 (left) summarizes the magneto-elastic
loading conditions in a piezomagnetic test. After the mechanical cycle,
the resulting piezomagnetic loop is illustrated in Fig. 9 (right). This test
is repeated at several bias field levels. Considering several levels of bias
field 𝐻𝑑𝑐 , the measured piezomagnetic loops are presented in Fig. 10
(top).

4. Identification of material parameters

4.1. Anhysteretic parameters

The anhysteretic material parameters for the single crystal are taken
from pure iron and are listed in Table 1. The material parameter 𝐴𝑠 can
be identified from stress-free anhysteretic measurements [42]:

𝐴𝑠 =
3𝜒0

𝜇0𝑀2
𝑠
, (22)

with 𝜒0 the initial susceptibility of a stress-free anhysteretic curve. 𝐴𝑠
is identified as 5.5 10−3 J/m3.
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Fig. 10. Comparison between measured (top) and modeled (bottom) piezomagnetic
urves under several levels of static field.

able 1
ingle crystal parameters for pure iron [43].
𝑀𝑠 (A/m) 𝜆100 (ppm) 𝜆111 (ppm) 𝐾1 (kJ/m3) 𝐾2 (kJ/m3)

1.71 106 21 −21 42.7 15

Table 2
Parameters related to the stress-dependence of 𝜅𝑘

𝐻 [30].

𝑎1 𝑎2 𝑎3 (MPa-1)

1.25 1.2 0.04

4.2. Hysteresis model parameters identification from constant
stress/variable field measurements

The dissipation parameters 𝜔𝑘 and 𝜅𝑘
𝐻 can be identified from a

et of measured coercive fields under increasing peak magnetic field
or the stress-free magnetic case [44]. These parameters for DC04 are
resented in [30], considering 16 pinning fields, and are given in
able 3. The determination of the total number of cells is detailed in
ppendix B.

As observed in the measured hysteresis loops of Fig. 11 (top), a
tatic stress modifies the coercive field. In order to model the mechan-
cal loading influence on dissipation, as discussed in Section 2.2, an
nalytical function 𝑎(𝜎𝑒𝑞) that shifts 𝜅𝑘

𝐻 depending on the stress level is
roposed in [30]. The parameters of 𝑎(𝜎𝑒𝑞) are identified from a set of
easured coercive fields under uniaxial stress. 𝑎(𝜎𝑒𝑞) is here recalled:

𝐻𝑐 (𝝈)
𝐻𝑐 (𝟎)

= 𝑎(𝜎𝑒𝑞) = 𝑎1 exp
(

−exp(𝑎2 + 𝑎3𝜎𝑒𝑞)
)

+ 1, (23)

with the three material parameters 𝑎1, 𝑎2 and 𝑎3 listed in Table 2.

4.3. Hysteresis model parameters identification from constant field/variable
stress measurements

The pinning stress distribution is identified using the procedure
presented in [44,45] but applied to the case of time-varying mechanical

loading. Starting from the demagnetized state, an uniaxial stress 𝜎𝑎 is

5 
Fig. 11. Comparison between measured [30] (top) and modeled (bottom) magnetic
hysteresis under several levels of static uniaxial stress.

applied. Considering a multicell case, the total reversible stress 𝜎𝑟𝑒𝑣 is
given by:

𝜎𝑟𝑒𝑣(0 → 𝜎𝑎) = ∫

∞

0
𝜔(𝜅𝜎 ) max(𝜎𝑎 − 𝜅𝜎 , 0) 𝑑𝜅𝜎 = 𝐹 (𝜎𝑎), (24)

such that only the pinning stresses with 𝜅𝜎 < 𝜎𝑎 will be modified. An
auxiliary function 𝐹 (𝜎) is then defined:

𝐹 (𝜎) = ∫

𝜎

0
𝜔(𝜅𝜎 )(𝜎 − 𝜅𝜎 ) 𝑑𝜅𝜎 , (25)

ith first and second derivatives given by:

𝜕𝐹
𝜕𝜎

= ∫

𝜎

0
𝜔(𝜅𝜎 ) 𝑑𝜅𝜎 ,

𝜕2𝐹
𝜕𝜎2

= 𝜔(𝜎).
(26)

Following [44,45] but applying the method to the piezomagnetic
case, the identification of 𝐹 (𝜎) is performed using a set of coercive
stresses 𝜎𝑐 under increasing peak stress 𝜎𝑝𝑒𝑎𝑘. This set should be ob-
tained from a measured field-free magnetostriction loop under variable
stress. The saturation magnetostriction for DC04 is about 5.5 10−6 [30],
and considering a Young modulus of about 192 GPa, a tension of 1 MPa
produces an elastic strain similar, in magnitude, to the saturation mag-
netostriction. Therefore, the elastic strain hides the magnetostriction
when stress is varying, so that magnetostriction strain versus stress
measurements could not be performed. However, 𝜅𝑘

𝜎 can be identified
from piezomagnetic measurements. In this case, the coercive stress 𝜎𝑐
is defined from each piezomagnetic loop using the stress values 𝜎+𝑐 and
𝜎−𝑐 (such that 𝜎+𝑐 > 𝜎−𝑐 ) for which 𝐵 = 𝐵𝑑𝑐 , with 𝐵𝑑𝑐 the bias level of
induction (see Fig. 12 (top)). 𝜎𝑐 is given by:

𝜎𝑐 =
1
2
(

𝜎+𝑐 − 𝜎−𝑐
)

. (27)

As the measured induction is close to zero under 𝐻𝑑𝑐 = 0 A/m in a
piezomagnetic test (see Fig. 10), the 𝜅𝑘

𝜎 parameter is identified from a
level of static field that is close to zero, but for which the induction
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Fig. 12. Comparison between measured (top) and modeled (bottom) piezomagnetic
oops under increasing peak stress and static field. The initial induction 𝐵𝑑𝑐 is about
.51 T.

Fig. 13. Set of coercive stresses under increasing peak uniaxial stress and constant
field 𝐻𝑑𝑐 = 51 A/m.

has a measurable value. The identification of 𝜅𝑘
𝜎 is performed from

measurements under 𝐻𝑑𝑐 = 51 A/m. The piezomagnetic loops under
ncreasing peak stress are depicted in Fig. 12 (top).

The set of coercive stresses under increments of mechanical loading
s shown in Fig. 13. The coercive stress characteristic is quadratically
xtrapolated in the region of low mechanical loadings by:

𝑐 (𝜎) = 𝜎𝑐,𝑚𝑖𝑛

(

𝜎
𝜎𝑚𝑖𝑛

)2
, if 𝜎 < 𝜎𝑚𝑖𝑛 (28)

with 𝜎𝑐,𝑚𝑖𝑛 the minimum measured coercive stress corresponding to
the peak stress 𝜎𝑚𝑖𝑛. Using this set of coercive stresses, the identified
auxiliary function 𝐹 (𝜎) is presented in Fig. 14.

The auxiliary function 𝐹 (𝜎) is interpolated by a smooth Spline

function, allowing to evaluate the first and second derivatives by a

6 
Fig. 14. Identified auxiliary function.

Fig. 15. Derivatives of the auxiliary function 𝐹 (𝜎).

inite difference method detailed in [45]:
𝜕𝐹 (𝑥𝑗 )
𝜕𝜎

≈ 𝐹 (𝑥𝑗 )
𝛥2 − 𝛥1

𝛥1𝛥2
+ 𝐹 (𝑥𝑗+1)

𝛥1

𝛥2𝛥3
− 𝐹 (𝑥𝑗−1)

𝛥2

𝛥1𝛥3

𝜕𝐹 2(𝑥𝑗 )
𝜕2𝜎

≈ 2
(

𝐹 (𝑥𝑗−1)
𝛥1𝛥3

−
𝐹 (𝑥𝑗 )
𝛥1𝛥2

+
𝐹 (𝑥𝑗+1)
𝛥2𝛥3

)

ith 𝛥1 = 𝑥𝑗 − 𝑥𝑗−1, 𝛥2 = 𝑥𝑗+1 − 𝑥𝑗 , 𝛥3 = 𝑥𝑗+1 − 𝑥𝑗−1.

(29)

The first and second derivatives of the auxiliary function 𝐹 (𝜎) are
presented in Fig. 15. As observed in Fig. 15(a), the first derivative curve
results in a cumulative distribution function (CDF). It can be noted
from the CDF that all the pinning stresses are reached when an uniaxial
loading above 100 MPa is applied. The second derivative of the auxiliary
function (Fig. 15(b)) yields to the identified pinning stress probability
density.

For numerical implementation, the continuous pinning stress distri-
bution is discretized. Following [44], a set of points (𝑥𝑘, 𝑦𝑘) is chosen
to approximate the CDF curve. As illustrated in Fig. 16(a), a piece-wise
linear function with 𝑁 = 16 segments gives a good representation of the
CDF. The discrete weight 𝜔𝑘 then corresponds to the area of a rectangle

below the continuous distribution 𝜔(𝜎), as presented in Fig. 16(b). Both
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Fig. 16. Discretization of the continuous pinning stress distribution.

Fig. 17. Coercive stress characteristic under static field and a peak stress of 100 MPa.

weight 𝜔𝑘 and pinning stress 𝜅𝑘 are evaluated following [46]:

𝜔𝑘 = 𝑦𝑘 − 𝑦𝑘−1

𝜅𝑘 =
(𝑥𝑘𝑦𝑘 − 𝐹 (𝑥𝑘)) − (𝑥𝑘−1𝑦𝑘−1 − 𝐹 (𝑥𝑘−1))

𝜔𝑘 .
(30)

The identified discrete pinning stresses are listed in Table 3.
The coercive stress depending on the level of static field 𝐻𝑑𝑐 is

presented in Fig. 17 for the same peak stress of 100 MPa. The pinning
stress 𝜅𝑘

𝜎 is considered constant under increments of static field in what
follows.

5. Validation

5.1. Comparison of the model with anhysteretic measurements

The modeled anhysteretic magnetic response under uniaxial stress
is presented in Fig. 18 (bottom). By considering a simplified crystallo-
graphic texture, the Villari reversal – in the region of about 2200 A/m –
is captured by the model. Moreover, inflections (or bowing) under high
7 
Table 3
Identified hysteresis parameters.
𝜅𝑘
𝐻 (A/m) 𝜅𝑘

𝜎 (MPa) 𝜔𝑘

0 0 0.01
19.9 3.8 0.0693
87.7 5.0 0.0693
116.8 13.0 0.0693
133.1 18.2 0.0693
144.8 21.5 0.0693
153.3 23.6 0.0693
161.5 26.5 0.0693
170.9 28.6 0.0693
180.9 28.9 0.0693
190.6 31.1 0.0693
204.3 35.3 0.0693
228.1 37.8 0.0693
275.3 44.9 0.0693
439.4 56.0 0.0693
1454 75.8 0.02

Fig. 18. Comparison between measured [30] and modeled anhysteretic magnetic
behavior under several levels of static uniaxial stress.

compression are also captured, though the model overestimates this
crystallographic texture effect, as observed in the case under −100 MPa.

Moreover, differences between the model and measurements are
observed, especially at the knee of the anhysteretic curves. Discrep-
ancies are attributed to two central factors: using a simplified texture
(with 16 grains) instead of the full measured texture (with 770 grains),
which allows the simulation time to be significantly reduced, and using
single-crystal material parameters from pure iron.

The anhysteretic longitudinal magnetostriction strain under static
uniaxial stress is shown in Fig. 19. These measurements are obtained
from hysteresis tests, but here the longitudinal magnetostriction strain
is presented as a function of magnetization, showing that the hysteresis
effects are significantly reduced in the 𝜖𝜇∕∕(𝑀) representation compared
to 𝜖𝜇∕∕(𝐻) (see Fig. 20). The rotation mechanism – depicted by the drop
of magnetostriction at about 1.38 MA/m – is captured by the model.
The model captures the trend of the longitudinal magnetostriction
under uniaxial stress.
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Fig. 19. Comparison between measured [30] and modeled anhysteretic magnetic
behavior under several levels of static uniaxial stress.

5.2. Comparison of the model with hysteresis measurements

The magnetic hysteresis behavior under static stress is shown in
Fig. 11. As presented in the anhysteretic modeling results, the texture
effects, such as the Villari reversal and inflections under high compres-
sion, are also captured in the modeled magnetic hysteresis. Comparing
these modeling results with those presented in [30], where an equiva-
lent single-crystal was considered, the improvement by considering the
simplified crystallographic texture is evident.

The modeled hysteretic behavior of longitudinal magnetostriction
as a function of the magnetic field is presented in Fig. 20 (bottom).
Under high field, it can be observed the formation of a small loop in
the region related to the domain rotation, which corresponds to the
drop in the magnetostriction strain presented in Fig. 19. This behavior
does not characterize a dissipation (the area of the 𝜖 𝜇(𝐻) loop is not
an energy). The formation of the loop in the domain rotation region
is not observable in the measurements due to the noise. The model
overestimates the compression effect on longitudinal magnetostriction
strain compared to the measurements (see Fig. 20 (top)). The modeling
results can be improved if the measured crystallographic texture is used
instead of the simplified one. Despite this drawback, Fig. 20 (bottom)
highlights the modeling capabilities to capture the static uniaxial stress
influence on the magnetostriction strain.

Applying a magneto-elastic loading of static field and quasi-static
uniaxial stress, the model reproduces the measured symmetric minor
loops (in terms of stress) by using the strategy of considering a discrete
distribution of pinning stresses, as shown in Fig. 12 (bottom). Some
differences are observed in the piezomagnetic loops under high tension,
in which the model underestimates the increase in magnetization.
One explanation is the use of a simplified crystallographic texture
instead of the measured one. Fig. 21 (top) presents the piezomagnetic
behavior under increasing stress considering the measured texture
with 770 crystallographic orientations. Compared to the results with
a simplified texture (see Fig. 21 (bottom)), a more significant increase
in magnetization under tension is observed, which is consistent with
the measurements (see Fig. 10 (top)). However, the simulation time
is increased by about 22 times when considering 770 crystallographic
8 
Fig. 20. Comparison between measured [30] (top) and modeled (bottom) longitudinal
magnetostriction under static uniaxial stress.

Fig. 21. Influence of the simplification of the crystallographic texture on the modeled
piezomagnetic loops.

orientations. Keeping a reasonable simulation time, the simplified tex-
ture predicts the general trend of the piezomagnetic behavior under
increasing stress.

Considering several levels of static field, the modeled piezomagnetic
loops are depicted in Fig. 10. The Villari reversal is evident in the
piezomagnetic loops with the slightly decreasing induction under high
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Fig. 22. Modeled mechanical behavior under quasi-static stress and zero static field.

Fig. 23. Magnetic response under simultaneous variations of field and stress.

tension. Such a texture-related behavior is captured by the model. The
main differences are noted in the area of the loops (20% difference
between modeled and measured results under 𝐻𝑑𝑐 = 233 A/m as the
worst case). Despite this difference, the measured piezomagnetic trends

under increasing bias field are captured by the model.

9 
To illustrate the effect of mechanical dissipation, Fig. 22 shows
the predicted longitudinal magnetostriction under varying stress and
𝐻𝑑𝑐 = 0 A/m. The mechanical dissipation is estimated as about 0.9
kJ/m3 per cycle. As previously pointed out, the low magnetostriction
strain of the tested material (DC04) did not allow the validation of
the modeled magnetostriction under varying mechanical loadings. For
comparison, the stress-free hysteresis losses in the case of time-varying
magnetic field is about 1.5 kJ/m3 per cycle.

A more complex validation configuration is when both the mag-
netic field and stress are varying in time. Considering the case of the
magneto-elastic loading of Fig. 23(a), the magnetic response is shown
as a function of the magnetic field in Fig. 23(b) and as a function of
the stress in Fig. 23(c). A very good agreement is observed between
modeling (blue solid lines) and experiments (red dashed lines).

6. Discussions on the model

To study the energetic consistency of the model, the case of variable
stress and static magnetic field is analyzed first (for the case of static
stress and varying field, the approach returns to the same thermo-
dynamically consistent hysteresis model presented in [30,47]). In the
case of varying stress and static magnetic field, the Clausius–Duhem
inequality for the magneto-mechanical behavior is given by:

𝐷 = −
∙
�⃗� ⋅ �⃗� −

∙
𝝈 ∶ 𝝐 −

∙
𝑔 ≥ 0. (31)

with 𝝐 the strain. The magnetostriction strain 𝝐 𝜇 is introduced as
internal variable to model the irreversible behavior due to stress vari-
ations. The internal variables are a modeling choice in a way that
they unify in a single (or more) variable (or variables) the com-
plex microscopic process that manifests in the form of dissipation at
the macroscopic scale [48]. Taking into account the internal variable
choice, the time-derivatives of the Gibbs free energy density

∙
𝑔 are given

by:

∙
𝑔(𝝈, �⃗� , 𝝐 𝜇) =

𝜕𝑔
𝜕𝝈

∶
∙
𝝈 +

𝜕𝑔

𝜕�⃗�
∶

∙
�⃗� +

𝜕𝑔
𝜕𝝐 𝜇 ∶

∙
𝝐 𝜇 . (32)

Replacing (32) into (31), gives:

= −
[

𝝐 + 𝜕𝑔
𝜕𝝈

]

∶
∙
𝝈 −

[

�⃗� +
𝜕𝑔

𝜕�⃗�

]

⋅
∙
�⃗� −

𝜕𝑔
𝜕𝝐 𝜇 ∶

∙
𝝐 𝜇 ≥ 0. (33)

From (33), the following relationships are defined, such that the
restrictions of the second-law of thermodynamics are fulfilled:

𝝐 = −
𝜕𝑔
𝜕𝝈

, (34a)

�⃗� = −
𝜕𝑔

𝜕�⃗�
, (34b)

𝐷 = −
𝜕𝑔
𝜕𝝐 𝜇 ∶

∙
𝝐 𝜇 ≥ 0. (34c)

To determine the irreversible behavior in terms of the internal
variables, first, a dissipation function 𝜙𝑑 (

∙
𝝐 𝜇) is introduced such that

𝜙𝑑 ∶ ℜ𝑛 → ℜ. The dissipation function can be non-smooth – or
on-differentiable at some points – and per definition is characterized
y [49]:
𝜕𝜙𝑑

𝜕
∙
𝝐 𝜇

= −
𝜕𝑔
𝜕𝝐 𝜇 . (35)

The dissipation inequality can be written as:

𝐷 =
𝜕𝜙𝑑

𝜕
∙
𝝐 𝜇

∶
∙
𝝐 𝜇 ≥ 0, (36)

and the following constraints in defining 𝜙𝑑 are necessary conditions
to fulfill the restrictions of the second-law of thermodynamics:

𝜙 (𝟎) = 0 and 𝜙 (
∙
𝝐 𝜇) ≥ 0. (37)
𝑑 𝑑
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In the case of rate-independent dissipation functions, which is the
interest here, 𝜙𝑑 is assumed to be positively homogeneous of degree
one and therefore [49]:

𝜙𝑑 (𝜏
∙
𝝐 𝜇) = 𝜏𝑘𝜙𝑑 (

∙
𝝐 𝜇) with 𝜏 ∈ ℜ+ and 𝑘 = 1. (38)

Using the chain rule, the following relationship can be defined:
𝜕𝜙𝑑

𝜕
∙
𝝐 𝜇

∶
∙
𝝐 𝜇 = 𝜙𝑑 (

∙
𝝐 𝜇). (39)

Therefore, the dissipation function 𝜙𝑑 (
∙
𝝐 𝜇) defines the evolution of

dissipation 𝐷 by:

𝐷 = 𝜙𝑑 (
∙
𝝐 𝜇) ≥ 0. (40)

From (35), a minimization procedure can be established to evaluate
the hysteresis behavior under variable mechanical loadings and static
fields. In this case, the energy density 𝑔 and the dissipation function 𝜙𝑑
need to be defined. Following the analogy of the magnetic hysteresis
with a dry-friction mechanism [35,38], the dissipation function 𝜙𝑑 is
defined as:

𝜙𝑑 (
∙
𝝐 𝜇) = 𝜅𝜎‖

∙
𝝐 𝜇

‖, (41)

with 𝜅𝜎 a pinning stress. For small enough time-steps, the dissipation
𝜙𝑑 is approximated by:

𝜙𝑑 (𝝐 𝜇) ≈ 𝜅𝜎
‖𝝐 𝜇 − 𝝐𝜇(𝑝)‖

𝛥𝑡
, (42)

ith 𝝐𝜇(𝑝) the magnetostriction strain at the previous time-step. From
his approximation, the partial derivative of the dissipation function
𝑑 is given by:
𝜕𝜙𝑑

𝜕
∙
𝝐 𝜇

≈
𝜕𝜙𝑑

𝜕

(

𝝐 𝜇 − 𝝐𝜇(𝑝)
𝛥𝑡

)
= 𝛥𝑡

𝜕𝜙𝑑
𝜕𝝐 𝜇 . (43)

From the definition of (35) and taking into account the approxima-
tion (43), the magnetostriction strain 𝝐 𝜇 is calculated from a minimiza-
tion by:
𝜕

𝜕𝝐 𝜇

[

𝑔(𝝈, �⃗� , 𝝐 𝜇) + 𝛥𝑡 𝜙𝑑 (𝝐 𝜇)
]

= 0 →

𝝐 𝜇 = arg min
[

𝑔(𝝈, �⃗� , 𝝐 𝜇) + 𝜅𝜎‖𝝐 𝜇 − 𝝐𝜇(𝑝)‖
]

subject to tr(𝝐 𝜇) = 0.
(44)

The energy density 𝑔(𝝈, �⃗� , 𝝐 𝜇) can be chosen as:

𝑔(𝝈, �⃗� , 𝝐 𝜇) = 𝑓 (�⃗�, 𝝐 𝜇) − 𝜇0
𝐻2

2
− 1

2
(

−1 𝝈
)

∶ 𝝈 − 𝝐 𝜇 ∶ 𝝈, (45)

with  the stiffness tensor, and 𝑓 (�⃗�, 𝝐 𝜇) a free energy density that
can be obtained from the partial numerical inversion of a magneto-
elastic anhysteretic model — here the multiscale approach. The time-
derivative

∙
𝑓 is:

∙
𝑓 (�⃗�, 𝝐 𝜇) = 𝝈𝑟𝑒𝑣 ∶

∙
𝝐 𝜇 − 𝜇0�⃗� ⋅

∙
�⃗� with

𝜕𝑓
𝜕𝝐 𝜇 = 𝝈𝑟𝑒𝑣 and 𝜕𝑓

𝜕�⃗�
= −𝜇0�⃗�.

(46)

and the reversible stress 𝝈𝑟𝑒𝑣 is introduced. With the choice of
𝑔(𝝈, �⃗� , �⃗�), (34a) and (34b) become:

−
𝜕𝑔

𝜕�⃗�
= 𝜇0

(

�⃗� + �⃗�
)

= �⃗�

−
𝜕𝑔
𝜕𝝈

= −1𝝈 + 𝝐 𝜇 = 𝝐𝑒 + 𝝐 𝜇 = 𝝐,
(47)

upposing small strains, with 𝝐𝑒 the elastic strain. From (34c):
𝜕𝑔

= −
𝜕𝑓

+ 𝝈 = −𝝈 + 𝝈 = 𝝈 , (48)

𝜕𝝐 𝜇 𝜕𝝐 𝜇 𝑟𝑒𝑣 𝑖𝑟𝑟 r
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nd the irreversible stress 𝝈𝑖𝑟𝑟 is introduced, defining the mechanical
oading decomposition into reversible and irreversible parts 𝝈 = 𝝈𝑟𝑒𝑣 +
𝝈𝑖𝑟𝑟.

Combining (44) and (45), the magnetostriction strain is given by
the minimization:

𝝐 𝜇 = arg min
[

𝑓 (�⃗�, 𝝐 𝜇) − 𝝐 𝜇 ∶ 𝝈 + 𝜅𝜎‖𝝐 𝜇 − 𝝐𝜇(𝑝)‖
]

subject to tr(𝝐 𝜇) = 0,
(49)

by considering that  does not depends on 𝝐 𝜇 , the terms of (45)
nvolving:

−1 𝝈
)

∶ 𝝈 and 𝜇0�⃗� ⋅ �⃗� (50)

re constants, and can be neglected in evaluating 𝝐 𝜇 .
As the dissipation 𝜙𝑑 (𝝐 𝜇) in non-differentiable at 𝝐 𝜇 = 𝝐𝜇(𝑝), the

ubsequent set defines the subgradients of 𝜙𝑑 [50]:

𝜕𝜙𝑑 (𝝐 𝜇)
𝜕𝝐 𝜇 ∈

⎧

⎪

⎨

⎪

⎩

𝝈𝑖𝑟𝑟, ‖𝝈𝑖𝑟𝑟‖ ≤ 𝜅𝜎 , if 𝝐 𝜇 = 𝝐𝜇(𝑝)
𝝈𝑖𝑟𝑟 = 𝜅𝜎

𝝐 𝜇−𝝐𝜇(𝑝)
‖𝝐 𝜇−𝝐𝜇(𝑝)‖

, otherwise.
(51)

By applying the vector-play approximation, an explicit solution of
the model is obtained, and the reversible stress updates are given by:

𝝈𝑟𝑒𝑣 =

⎧

⎪

⎨

⎪

⎩

𝝈𝑟𝑒𝑣(𝑝) if ‖𝝈 − 𝝈𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝜎
𝝈 − 𝜅𝜎

𝝈 − 𝝈𝑟𝑒𝑣(𝑝)

‖𝝈 − 𝝈𝑟𝑒𝑣(𝑝)‖
otherwise, (52)

eturning the model presented in Section 2.3. Therefore, the proposed
pproach is thermodynamically consistent in the case of static mag-
etic fields and varying mechanical loadings. However, as pointed
ut in [50], where the vector-play approximation is shown to exhibit
imitations in the case of 2D spiral magnetic fields, it is expected that
he vector-play approximation for the stress also may show limitations
hen complex stress loadings are applied.

. Conclusion

A magneto-elastic hysteresis model taking into account simultane-
us time-variations of magnetic field and mechanical stress has been
resented. The dissipation due to variations of mechanical loading is
odeled from an analogy of the decomposition of the magnetic field
into reversible and irreversible parts – applied to the mechanical

tress. In this case, irreversible stress describes the dissipative behavior
ue to mechanical loading variations. A pinning stress parameter is
ntroduced and is identified from piezomagnetic measurements. The
pproach captures the piezomagnetic behavior, and validation under
imultaneously varying stress and magnetic field is performed with
atisfying agreement. The model can be summarized as two thermody-
amically consistent models in the situation of static stress and varying
ield, and in the situation of static field and varying stress. The model
llows for multiaxial magneto-elastic loadings, and could be applied in
complex application, such as under rotating stress and static field,

or example, with thermodynamic consistency. The proposed approach
s the first magneto-elastic hysteresis model validated under general
agneto-elastic loadings, permitting the representation of the magnetic
ysteresis under static stress and variable magnetic field, static field
nd variable stress, and simultaneously time variations of magnetic
ield and stress.
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Appendix A. Algorithm of the model

The main algorithm of the magneto-elastic hysteresis model is pre-
sented below (Algorithm 1). The anhysteretic behavior is evaluated
from the subroutine MSM.

Algorithm 1: Magneto-elastic hysteresis model

Input: 𝝈, �⃗�
Output: 𝝐 𝜇 , �⃗�
Rev. parameters: 𝐴𝑠,𝑀𝑠, 𝜆100, 𝜆111, 𝐾1, 𝐾2
Irr. parameters: 𝜔𝑘, 𝜅𝑘𝐻 , 𝜅𝑘𝜎
for 𝑘 = 1 ∶ N do

if ‖�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘

𝐻 then

�⃗�𝑘
𝑟𝑒𝑣 ← �⃗�𝑘

𝑟𝑒𝑣(𝑝)

else

�⃗�𝑘
𝑟𝑒𝑣 ← �⃗� − 𝜅𝑘

𝐻

⎛

⎜

⎜

⎝

�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)

‖�⃗� − �⃗�𝑘
𝑟𝑒𝑣(𝑝)‖

⎞

⎟

⎟

⎠

end
if ‖𝝈 − 𝝈𝑘

𝑟𝑒𝑣(𝑝)‖ ≤ 𝜅𝑘
𝜎 then

𝝈𝑘
𝑟𝑒𝑣 ← 𝝈𝑘

𝑟𝑒𝑣(𝑝)

else

𝝈𝑘
𝑟𝑒𝑣 ← 𝝈 − 𝝈𝑘

𝑟𝑒𝑣(𝑝)

(

𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)

‖𝝈 − 𝝈𝑘
𝑟𝑒𝑣(𝑝)‖

)

end

�⃗�𝑘, 𝝐 𝜇,𝑘 ← MSM(𝐴𝑠,𝑀𝑠,𝜆100,𝜆111,𝐾1,𝐾2,�⃗�𝑘
𝑟𝑒𝑣,𝝈𝑘

𝑟𝑒𝑣)

�⃗� ←
(

𝜔𝑘�⃗�𝑘
)

+ �⃗�

𝝐 𝜇 ←
(

𝜔𝑘𝝐 𝜇,𝑘) + 𝝐 𝜇

end

Appendix B. Definition of the number of cells

The number of cells is determined by comparing the modeling
results with measurements of the stress-free hysteresis loop under
11 
Fig. 24. Comparison between measurements and model for the stress-free magnetic
hysteresis behavior.

Fig. 25. Relative error between measurements and model.

variable magnetic field. Some illustrative cases are presented in Fig. 24
considering different number of cells.

The relative error between measurements and model is evaluated
by:

𝑒𝑟𝑟𝑜𝑟 =
𝐵𝑚𝑜𝑑 − 𝐵𝑚𝑒𝑠

𝐵𝑚𝑒𝑠
× 100, (53)

with 𝐵𝑚𝑒𝑠 and 𝐵𝑚𝑜𝑑 the measured and modeled induction, respectively.
The relative error considering the first magnetization curve for the
stress-free case is presented in Fig. 25. Increasing the number of cells
decreases the relative error, especially for low magnetic fields. How-
ever, above 16 cells, no significant modification is noted in the relative
error, indicating that increasing the number of cells will only result in
a higher computational cost.
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