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A Magneto-Elastic Vector-Play Model
Under Rotating Fields and Multiaxial Stress States

Luiz Guilherme da Silva 1,2,3, Laurent Bernard 3, Floran Martin 4, Anouar Belahcen 4,
and Laurent Daniel 1,2

1Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192
Gif-sur-Yvette, France

2Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France
3GRUCAD/EEL/CTC, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil

4Department of Electrical Engineering and Automation, Aalto University, 00076 Espoo, Finland

The hysteresis behavior of ferromagnetic materials under static stress is represented using an energy-based vector-play approach
combined with a multiscale model. Using parameters identified from uniaxial measurements along one direction only, the modeling
predictions agree well with the measured hysteresis loops of a non-oriented (NO) iron-silicon steel under multiaxial mechanical
loadings and rotating fields. The hysteresis loss trend under stress is also reproduced with the proposed approach. Notably, the
model reproduces the influence of complex mechanical loadings, such as shear, in the rotating losses description with errors lower
than 12%.

Index Terms— 2-D magneto-mechanical loadings, magnetic hysteresis, magneto-elastic behavior, non-oriented (NO) iron-silicon.

I. INTRODUCTION

IN ELECTRICAL devices, such as rotating machines or
transformers, ferromagnetic materials may be submitted to

mechanical stress and rotating magnetic fields in a complex
multiaxial fashion, which can affect the efficiency and the
operation of such machines [1], [2], [3]. Mechanical stress can
originate from manufacturing processes, for instance, shrink
fitting, or from the operation of high-speed devices, resulting
in centrifugal forces, impacting the hysteresis and eddy current
losses of electrical machines [4], [5], [6]. An energy-based
vector-play approach [7] was recently proposed to model
the coupled magneto-elastic behavior under static stress. This
approach allows for modeling the magnetic hysteresis behavior
under multiaxial magneto-elastic loadings. However, it has
been validated under alternating magnetic fields only [8].
In this work, the vector-play model, with parameters identified
from uniaxial tests along one direction only, is applied to
represent the hysteresis behavior of a non-oriented (NO) Fe–Si
under rotating fields and multiaxial stress loadings.

II. MODELING

A. Irreversible Behavior

In the energy-based vector-play model, the magnetic field
H⃗ is defined as the sum of a reversible component H⃗ rev
and an irreversible component H⃗ irr. H⃗ rev is directly related
to a thermodynamic reversible state, while H⃗ irr describes the
dissipative effects in the magnetization process. An explicit
solution for the energy-based model is proposed in [9]. The
numerical implementation of the iterative model is performed
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considering a time discretization, divided into time steps, and
starting from the demagnetized state. The reversible field H⃗ rev
is updated at each time step by

H⃗ rev =

{
H⃗ rev(p), if

∥∥H⃗ − H⃗ rev(p)

∥∥ ≤ κ

H⃗ − κ
H⃗−H⃗ rev(p)

∥H⃗−H⃗ rev(p)∥
, otherwise

(1)

with H⃗ rev(p) being the previous value of the reversible field. κ

represents a pinning field and is equal to the coercive field in
a hysteresis loop. To model the first magnetization curve and
symmetric and asymmetric minor loops, a discrete distribution
of pinning fields can be used [9]. In this case, the weight ωk

of each pinning field κk is introduced. It verifies
N∑

k=1

ωk
= 1 (2)

with N representing the total number of pinning fields.
From experimental measurements, the influence of mechan-

ical stress on the coercive field—and, therefore, on the pinning
fields—is observed. A scaling of the pinning fields depending
on the stress level is proposed in [7]

κ(σ ) = a
(
σeq
)
κk(0) with a

(
σeq
)

=
Hc(σ )

Hc(0)
(3)

with the function a(σeq) being identified from uniaxial
measurements of the coercive field Hc along rolling direction
(RD), σ the second-order stress tensor, 0 the null second-
order tensor, representing a stress-free situation, and σeq an
equivalent stress proposed by [10]

σeq =

r −

√
e⃗ t(r I −

3
2 d
)2

e⃗, if e⃗ t de⃗ ≤
2r
3

r +

√
e⃗ t(r I −

3
2 d
)2

e⃗, otherwise
(4)

with r being a material parameter, identified from uniaxial
measurements, which represents the stress value for which the
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magnetic permeability is maximum in an anhysteretic uniaxial
configuration. e⃗ is the unit vector in the direction of the
magnetic field H⃗ , and e⃗ t is its transpose. d is the deviatoric
part of the stress tensor given by

d = σ −
1
3

tr(σ )I (5)

with tr(σ ) being the trace of the stress tensor.
The energy-based hysteresis model cannot reproduce the

vanishing of hysteresis losses under rotating fields near
the saturation [11]. To correct this drawback, mathematical
approaches are inserted in the definition of the pinning field
such that the losses description can be captured [11], [12].
Following a stress-free hysteresis case [12], [13], the pinning
field is multiplied by a function f1 defined as

κk(M⃗, σ
)

= f1
(
M⃗
)

κk(σ ) with f1
(
M⃗
)

= 1 −

(∥∥M⃗
∥∥

Ms

)n

(6)

such that κ vanishes when the magnetization is close to the
saturation. The parameter n = 10 is taken from [12] but could
be used as an adjustable parameter.

B. Reversible Behavior

Neglecting dissipation, the energy-based approach reduces
to a reversible process. A multiscale approach (MSM) models
the reversible (anhysteretic) behavior. In this case, three scales
are defined: the magnetic domain scale (denoted by the index
α), the grain or single-crystal scale (denoted by the index g),
and the representative volume element scale (RVE), in which
the macroscopic constitutive laws are evaluated.

Considering homogeneous magnetic field and stress within
the grains, the Gibbs free energy density at the domain scale
is introduced and defined from its magnetic gmag

α , magneto-
elastic gel

α , and anisotropy gan
α parts, which are given by [14]

gmag
α = −µ0 H⃗ rev · M⃗α

gan
α = K1

(
α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3

)
+ K2

(
α2

1α
2
2α

2
3

)
gel

α = −σ : ϵµ
α (7)

with M⃗α representing the magnetization at the domain scale,
defined by its direction α⃗ and norm Ms , the saturation
magnetization. K1 and K2 are the anisotropy constants. ϵµ

α is
the second-order magnetostriction strain tensor given by (for
cubic symmetry)

ϵµ
α =

3
2

λ100
(
α2

1 −
1
3

)
λ111α1α2 λ111α1α3

λ111α2α1 λ100
(
α2

2 −
1
3

)
λ111α2α3

λ111α3α1 λ111α3α2 λ100
(
α2

3 −
1
3

)
 (8)

with components expressed in the grain coordinate system.
The volume fraction pα of a domain family with orientation
α⃗ is evaluated using a Boltzmann distribution [15]

pα =
exp (−As gα)∑
α exp (−As gα)

(9)

with As being a material parameter that can be identified
from the initial susceptibility of a stress-free anhysteretic
curve [14]. The magnetization M⃗g and magnetostriction strain

Fig. 1. Principle of the hysteresis model with material parameters indicated
in red.

ϵ
µ
g at the grain scale are then given by the corresponding

volume averages

M⃗g =

∑
α

pα M⃗α and ϵµ
g =

∑
α

pαϵµ
α . (10)

At the macroscopic scale, the magnetization M⃗ and
magnetostriction strain ϵµ are given by the average behavior
of each grain

M⃗ =

∑
g

pg M⃗g and ϵµ
=

∑
g

pgϵ
µ
g (11)

where pg represents the volume fraction of each grain
orientation used to describe the crystallographic texture [8].

In this work, only static mechanical loadings are considered,
and dissipation is defined through variations in the magnetic
field. The hysteresis model under variable fields and constant
stress is summarized in Fig. 1.

The magnetization and magnetostriction strain for each
pinning field are written as M⃗k(H⃗ k

rev, σ ) and ϵµ,k(H⃗ k
rev, σ ).

By using a weighted sum, the total magnetization and
magnetostriction strain are given by

M⃗ =

N∑
k=1

ωk M⃗
k(

H⃗ k
rev, σ

)
and ϵµ

=

N∑
k=1

ωkϵµ,k(H⃗ k
rev, σ

)
.

(12)

III. IDENTIFICATION OF MATERIAL PARAMETERS

The material tested in this work is an NO Fe–Si whose
crystallographic texture measurements are reported in [8]. The
geometry of the sample, adapted to the single-sheet biaxial
setup, consists of six legs with a measurement area of 20 ×

20 mm2. The magnetic field and induction are measured with
an H-coil and a B-coil, respectively. The magnetic induction
is controlled at 10 Hz in the hysteresis measurements. Much
more details about the experimental setup are presented
in [16] and [17]. The material parameters are identified from
uniaxial measurements performed along RD [8]. The set of
experimental data used for parameter identification includes
a stress-free anhysteretic curve, 12 stress-free symmetric
hysteresis loops, such that a coercive field characteristic
versus peak magnetic field can be defined, and three major
hysteresis loops under uniaxial stress, which allow capturing
a stress-dependent pinning field (in the range of −50 to
+100 MPa). The anhysteretic parameters are listed in Table I.
The hysteresis parameters ωk and κk are also given in [8]
considering N = 25 pinning fields. The parameter r , related
to the equivalent stress, is r = 20 MPa.
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TABLE I
PARAMETERS OF THE REVERSIBLE MODELING [8]

Fig. 2. Stress-free magnetic behavior. Comparison between measure-
ments [16] and the proposed modeling. (a) Magnetic field loci. (b) Induction
loci. (c) Hysteresis behavior along RD under rotating field. (d) Hysteresis
behavior along TD under rotating field.

IV. VALIDATION

The measurements were performed considering in-plane
stress assumption and controlling the induction [16]. The 2-D-
stress tensor is denoted as [σ11 σ22 σ12] with 1 representing RD
and 2 transverse direction (TD). Using the measured waveform
of the magnetic field as input of the model [see Fig. 2(a)], the
model reproduces the measured loci of induction, as shown in
Fig. 2(b). The hysteresis loops for RD and TD are presented
in Fig. 2(c) and (d), showing that the modeling results
capture the general behavior of the hysteresis loops. Main
differences, also noted in the induction loci, are observed in
Fig. 2(d), in which the model overestimates the induction
at high fields along TD. This difference can be attributed
to a limitation in which the anisotropy is underestimated in
modeling, as discussed in [8]. Anisotropy is indeed accounted
for through the crystallographic texture information but is not
considered in the hysteresis parameters that are identified from
measurements along RD only.

The influence of the function f1(M⃗) in defining the pinning
field can be observed in the modeled rotating losses curve.
The measured losses are shown in Fig. 3 for the stress-
free case. It can be noted that above 1.3 T, the decrease in
hysteresis losses is insured using this adaptation. This result
is an improvement compared to the approach presented in [8],
which results in the solid line shown in Fig. 3. Due to the
limitations of the experimental setup, the maximum measured
induction amplitude is 1.2 T. If tests under higher induction
levels were available, the n-parameter can be adequately
identified so that the modeling results can be adjusted to the
measurements.

Under a compression of 30 MPa applied along RD, the
measured magnetic field waveforms shown in Fig. 4(a) are
inserted in the model. The induction loci presented in Fig. 4(b)
shows that the model reproduces the measured behavior.
A better matching is observed at high induction levels.

Fig. 3. Stress-free hysteresis losses. Comparison between the measurements
(markers) [16] and the model without pinning field adaption (solid line) [8]
and with the adaption (dashed line).

Fig. 4. Magnetic behavior under compression applied along RD. Comparison
between measurements [16] and the proposed modeling. (a) Magnetic field
loci. (b) Induction loci. (c) Modeled hysteresis behavior along RD under
rotating field. (d) Measured hysteresis behavior along RD under rotating field.
(e) Modeled hysteresis behavior along TD under rotating field. (f) Measured
hysteresis behavior along TD under rotating field.

The magnetic hysteresis response along RD is satisfactorily
reproduced in modeling [see Fig. 4(c) and (d)]. Along TD, the
modeled loops differ more significantly from measurements
[see Fig. 4(e) and (f)], which is also observed in the induction
loci of Fig. 4(b). As for the stress-free case, the differences are
highlighted particularly for low induction levels. By increasing
the induction, the material gets closer to saturation, and
anisotropy effects are less significant so that the modeled
induction loci are closer to the measured circle.

In a challenging magneto-elastic configuration, shear stress
is applied together with a rotating field, as shown in Fig. 5(a).
Despite the complex hysteresis loop shape, the modeling
components B1 and B2 are close to the measurements,
as observed in Fig. 5(c) and (d). As previously discussed, the
model overestimates the induction along TD, as also seen in
the induction loci of Fig. 5(b). Another limitation under this
magneto-elastic configuration is noted in the region of B2 = 0
along TD [see Fig. 5(d)]. This disparity between modeling
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Fig. 5. Magnetic behavior under shear. Comparison between measure-
ments [16] and the proposed modeling.

Fig. 6. Comparison between measured [16] (markers) and modeled (solid
lines) hysteresis losses under rotating field and static multiaxial stress.

and measurements results in a difference of about 12% in the
rotating hysteresis losses. Using different pinning fields for
RD and TD, as presented in [18], could improve the modeling
results. However, in addition to uniaxial measurements along
RD, experimental results along TD would be required to
identify the pinning fields.

The model captures the trend of hysteresis losses under
biaxial stress and rotating field, as observed in Fig. 6.
Notably, the increase in hysteresis losses, especially under
shear, is represented in the approach. By adapting the pinning
field (6), the model represents the vanishing of hysteresis
losses in the region of domain rotation for different mechanical
states.

V. CONCLUSION

Using material parameters identified from uniaxial tests
along one direction only, the combination of a vector-play
model and an MSM predicts the magnetic hysteresis loops and
the loss trend of a ferromagnetic material under rotating fields
and multiaxial mechanical loadings. The model validation
has been performed by considering complex magneto-elastic
loadings different from those used for parameter identification.
To improve the description of stress-induced anisotropy
effects, the heterogeneity of the mechanical loading at the
grain scale could be taken into account from an MSM
using localization and homogenization schemes. Future works
include the numerical inversion of the model to be plugged
into a B-conform finite element simulation in order to evaluate
the influence of mechanical loadings on the efficiency of
electromagnetic devices.
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