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The ferromagnetic materials used in electrical machines are usually subjected to multiaxial mechanical loadings. The influence
of these multiaxial stress states on the hysteresis behavior can be modeled using an extended vector-play model. In this approach,
a combination of an anhysteretic multiscale model and a magnetic hysteresis vector-play model is proposed. The magnetic hysteresis
response of a nonoriented (NO) iron–silicon steel subjected to biaxial stress loadings is simulated using the vector-play approach.
By considering a simplified texture, anisotropy effects are also taken into account. The simulation results are then compared with
experimental measurements previously presented in the literature. It is shown that the proposed approach, with parameters identified
from uniaxial measurements along one direction only, allows predicting the hysteresis losses under bi-tension, bi-compression, and
shear with errors lower than 15% when the field is along rolling direction (RD). The hysteresis losses for a more challenging
configuration, with field along the transverse direction (TD) and under biaxial stress, are also reasonably predicted with errors
lower than 25%.

Index Terms— Anisotropy, magnetic hysteresis, magneto-elasticity, multiaxial stress, multiscale modeling, nonoriented (NO) iron–
silicon.

I. INTRODUCTION

THE ferromagnetic materials used in electrical machines
are sensitive to mechanical stress [1], [2]. The

magneto-mechanical coupling is notably observed in the influ-
ence of the stress state on the behavior of ferromagnetic
materials (permeability and losses) [3], [4], [5], [6], [7], [8],
and in the efficiency of electromagnetic devices [9], [10], [11].
The sources of mechanical stress in electrical machines are
remarkably due to manufacturing processes [12], [13] and cen-
trifugal forces of high-speed machines [11], [14]. Therefore,
the ferromagnetic materials are subjected to multiaxial stress
states.

Experimental benches devoted to the characterization of
magnetic materials under biaxial stress are presented in [15],
[16], [17], [18], and [19]. It is observed that pure shear [with
compression applied in the rolling direction (RD) and tension
in the transverse direction (TD)] strongly increases the hystere-
sis losses [20], [21] and degrades the secant permeability [17]
of nonoriented (NO) Fe–Si when the magnetization is along
the RD. The magnetostriction strain of low-carbon steel is also
sensitive to biaxial stress states [22].

A common approach to modeling the coupled
magneto-elastic behavior is the extension of classical magnetic
hysteresis models. An extension of the Jiles–Atherton–Sablik
approach [23] to the case of biaxial mechanical loadings is
presented in [24] and [25]. Two uniaxial magneto-mechanical
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energies are introduced corresponding to the stresses applied
along two perpendicular axes. A fictitious magnetic field
mimics the effects of mechanical stress on the magnetic
behavior, and it is further added to an effective magnetic
field. Because the reversible behavior is defined as a function
of the effective field, thermodynamic inconsistency is found
in Jiles–Atherton models, as pointed out in [26]. Moreover,
the approach presented in [24] is limited to in-plane
stress.

The limitation of in-plane mechanical loadings can be
solved by introducing equivalent stresses [15], [27], [28], [29].
Based on a simplified multiscale approach, an equivalent stress
is presented in [30]. In this case, an equivalence in magnetiza-
tion under multiaxial and uniaxial magneto-elastic loadings is
proposed. By combining this strategy with the Jiles–Atherton–
Sablik model [23], the effect of the magneto-mechanical
coupling on the torque and losses of an electromagnetic device
is evaluated in [31]. The main drawback of the equivalent
stress of [30] is that it neglects the effects of shear with
respect to the magnetic field. This limitation is addressed
in [32], where an equivalent stress based on a thermodynamic
approach is presented.

Another method to evaluate the effects of multiax-
ial stress on magnetic behavior is the combination of
anhysteretic magneto-mechanical models and magnetic hys-
teretic approaches. Magneto-mechanical extensions of the
Jiles–Atherton model are presented in [33], [34], and [35].
In the propositions of [34] and [35], simplified multiscale
approaches are used to model the anhysteretic behavior, and
the pinning parameter is adapted to the magneto-mechanical
case. These coupled extensions allow estimating the losses of
electrical machines subject to multiaxial stress loadings.
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A magneto-elastic extension based on the Hauser hysteresis
model is proposed in [20], where a simplified multiscale
approach models the reversible behavior. The model captures
the trends for the evolution of the coercive field under biaxial
stress. However, the definition of the irreversible field in the
Hauser approach only allows uniaxial magnetic loadings. This
is a strong limitation in predicting the magnetic behavior under
a rotating magnetic field.

A recently published article [36] presents an extension of
a hysteresis vector-play model to consider magneto-elastic
loadings. This thermodynamically consistent model reasonably
predicts the hysteresis behavior under uniaxial stress and
shows promising results in representing asymmetric minor
loops. The model allows for a multiaxial stress state and
a vector magnetic loading, despite limitations to represent
hysteresis losses under a rotating field of high intensity [37].
However, it has only been validated so far under uniaxial
magneto-elastic conditions. A similar vector model is proposed
in [38] considering the superposition of scalar play models.
In this case, the hysteresis mechanism is evaluated at the
grain scale, and the dissipation parameter is weighted by the
volume fraction, which results in a parameter identification
with stress-free measurements only. However, the hysteresis
evaluation at the grain scale may increase the computational
cost compared to the hysteresis mechanism applied directly at
the macroscopic scale [36]. This difference can be crucial for
finite-element simulation of devices.

In this article, the magnetic response of a NO Fe–Si
steel under a multiaxial mechanical state is simulated using
the vector-play model of [36]. In contrast with [36], where
a simplified multiscale model was shown to appropriately
represent the reversible behavior of a DC04 steel, the crystal-
lographic texture has a more significant role when analyzing
the magnetic response of Fe–Si. Therefore, in this work, the
anhysteretic behavior is modeled from a multiscale approach
where the crystallographic texture is considered. Another dif-
ference from the model presented in [36] comes from the use
of an equivalent stress accounting for shear stress effects [32].
The material parameters are identified from the uniaxial
measurements presented in [21] and [39], and the losses pre-
diction under biaxial stress is compared with the measurements
of [21].

II. MODELING

A. Reversible Behavior

The reversible behavior is modeled using a multiscale
approach [40]. In this case, four scales are defined (see Fig. 1):
the magnetic domain scale (denoted by the index α), the grain
or single-crystal scale (denoted by the index g), the polycrystal
(macroscopic) or representative volume element (RVE) scale,
and the structure scale. This article focuses on modeling
the magneto-elastic behavior at the RVE scale, which is the
appropriate scale to define the macroscopic constitutive law of
the material.

An orthonormal vector basis (e⃗1, e⃗2, e⃗3) is defined, in which
e⃗1 is the RD, e⃗2 the TD, and e⃗3 the normal direction. The

Fig. 1. Scales involved in the multiscale modeling.

magnetic field H⃗ and mechanical stress σ are then written as

H⃗ =
∑

i

Hi e⃗i and σ =
∑

i

∑
j

σi j e⃗i ⊗ e⃗ j (1)

where the operator ⊗ represents the tensor product.
A domain family is defined as the set of domains with the

same magnetization M⃗α and magnetostriction strain ϵµ
α . In a

domain family α with orientation α⃗, the magnetization M⃗α is

M⃗α = Ms α⃗ with α⃗ =
∑

i

αi e⃗i . (2)

Ms is the saturation magnetization. The magnetostriction
strain ϵµ

α for a cubic symmetry is written as
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(3)

with λ100 and λ111 being the magnetostriction constants. The
components of α⃗ and ϵµ

α in (2) and (3) are expressed in the
crystal coordinate system, respectively.

From the energy balance at the domain scale and consid-
ering H⃗ and σ homogeneous within the material, the Gibbs
free energy density gα is introduced. This energy density is
composed of the sum of the magnetic gmag

α , anisotropy gan
α ,

and elastic gel
α parts, defined as [40]

gmag
α = −µ0 H⃗ · M⃗α

gan
α = K1

(
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1α
2
2 + α2

1α
2
3 + α2

2α
2
3

)
+ K2

(
α2

1α
2
2α

2
3

)
gel

α = −σ : ϵµ
α (4)

where K1 and K2 are the magneto-crystalline anisotropy
constants. The operator · is the dot product, and the operator :
is the double-dot product. The operations are evaluated with
the quantities in the same coordinate system.

The volume fraction pα of the domain family α is estab-
lished by using a Boltzmann relation [41]

pα =
exp (−As gα)∑
α exp (−As gα)

(5)

where As is a material parameter. The set of possible
domain family orientations is defined through the nodes of
an icosphere—a geometric mesh that approximates a sphere
using triangular faces [42]. In this work, an icosphere with
2562 nodes is used to represent the set of possible domain
orientations.

Authorized licensed use limited to: Centrale Supelec. Downloaded on October 25,2023 at 13:15:32 UTC from IEEE Xplore.  Restrictions apply. 



DA SILVA et al.: MULTIAXIAL VALIDATION OF A MAGNETO-ELASTIC VECTOR-PLAY MODEL 7301010

With the definition of pα , the magnetization M⃗g , and the
magnestostriction strain ϵ

µ
g at the grain scale are evaluated by

M⃗g =
∑

α

pα M⃗α and ϵµ
g =

∑
α

pαϵµ
α . (6)

The macroscopic (see RVE in Fig. 1) magnetization M⃗ and
magnetostriction strain ϵµ are then evaluated by an operation
of volume average

M⃗ =
∑

g

pg M⃗g and ϵµ
=

∑
g

pgϵ
µ
g (7)

where pg represents the proportion of each grain orientation,
which can be defined from the texture measurements of the
sample.

B. Irreversible Behavior

The irreversible behavior is modeled at the macroscopic
scale employing an energy-based model in a vector-play
form [36], [43]. Applying the hysteresis model at the macro-
scopic scale results in neglecting the grain-to-grain interac-
tions. This choice is justified because the dissipation is due
mainly to the interaction between domain walls and defects,
and a random distribution of defects within the material is
assumed so that the dissipation parameters do not depend on
the direction. Anisotropy effects due to the material texture
or induced by the mechanical stress are accounted for through
the reversible behavior. This choice reduces the computational
cost of the proposed approach, which can be used in numerical
analysis tools.

The dissipation D is modeled using an analogy with a
dry-friction mechanism as [43]

D = µ0κ∥
·

M⃗∥ ≥ 0 (8)

with κ being the pinning field, a positive scalar. κ can be
described by a symmetric positive-definite matrix to consider
the anisotropy [44]. However, such an approach would require
measurements along RD and TD to characterize the anisotropy
and identify the dissipation parameters. In this work, the
anisotropic effects were considered sufficiently captured from
the anhysteretic behavior.

In this energy-based approach, the magnetic field is defined
as the sum of reversible H⃗ rev and irreversible H⃗ irr parts. H⃗ irr
is related to D by [43]

D = µ0 H⃗ irr ·

·

M⃗ ≥ 0, with H⃗ irr = H⃗ − H⃗ rev. (9)

The analogy of the magnetic hysteresis with a dry-friction
mechanism is illustrated in Fig. 2.

To model the first magnetization curve and minor loops,
the pinning field κ can be represented by a discrete distribu-
tion [43]. In this case, the single dry-friction system of Fig. 2
is replaced by a series connection of cells. In Fig. 3, a structure
with N dry-friction cells is presented.

In this multicell context, the magnetic field at each k-cell is
defined as

H⃗ = H⃗ k
rev + H⃗ k

irr. (10)

Fig. 2. Analogy of the magnetic hysteresis phenomena with a mechanical
system.

Fig. 3. Analogy of the magnetic hysteresis phenomena with a mechanical
system made of N dry-friction cells.

From the mechanical analogy with a dry-friction system,

and from the subdifferential of (8) in relation to
·

M⃗ , the
reversible field can be written as [43]

H⃗ k
rev =

H⃗ k
rev(p), if ∥H⃗ − H⃗ k

rev(p)∥ ≤ κk

H⃗ − κk H⃗−H⃗ k
rev(p)

∥H⃗ −H⃗ k
rev(p)∥

, otherwise.
(11)

with H⃗ k
rev(p) being the previous value of the reversible field at

the k-cell. The constant κk represents the pinning field at the
k-cell. Due to the macroscopic approach considered for the
hysteresis mechanism, there is no explicit connection between
κk and the domain structure. The weight ωk of each cell is
introduced. It verifies

N∑
k=1

ωk
= 1. (12)

The magnetization M⃗k
(H⃗ k

rev, σ ) and magnetostriction strain
ϵµ,k(H⃗ k

rev, σ ) at each cell are evaluated considering the multi-
scale approach presented in Section II-A. By using a weighted
sum, the homogenized response is then

M⃗ =
N∑

k=1

ωk M⃗
k(

H⃗ k
rev, σ

)
and ϵµ

=

N∑
k=1

ωkϵµ,k(H⃗ k
rev, σ

)
.

(13)

A simplified sketch of the algorithm is presented in
Appendix A.

III. PARAMETERS IDENTIFICATION

The measurements performed on a NO Fe–Si electrical
steel [21], [39] are used for the parameter identification. The
discrete pole figures for the NO Fe–Si material are shown in
Fig. 4. This set corresponds to 24 distinct crystallographic
orientations with their corresponding volume fraction. The
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Fig. 4. Pole figures (24 orientations) for a NO Fe–Si alloy.

TABLE I
PARAMETERS OF THE REVERSIBLE MODELING

Fig. 5. Comparison between measured (error bars) and modeled (solid line)
stress-free anhysteretic behavior along RD. The dashed line represents the
prediction of the stress-free anhysteretic behavior along TD.

pole figures were obtained using the MTEX toolbox [45] from
X-ray measurements reported in [46].

The measurements [21], [39] were performed considering
in-plane stress assumption. Therefore, the stress tensor can be
written in Voigt notation as

σ = [σ11 σ22 σ12]. (14)

The material parameters associated with the reversible
behavior and the irreversible behavior are separately identified.

A. Reversible Behavior Parameters

The parameters λ111, K1, and K2 can be found in [47]
for a Fe–Si material. Due to the simplifying assumptions to
model the reversible behavior, the parameters Ms and λ100 are
adapted for the modeling results to match with measurements
of anhysteretic magnetization and magnetostriction strain for
the stress-free case. The identified material parameters are
listed in Table I.

The anhysteretic behavior for the stress-free case is pre-
sented in Fig. 5. The magnetization is oriented along RD
and TD. The model satisfactorily reproduces the measured
reversible behavior for the stress-free case with magnetization
along RD. It is noted that anisotropic effects are more visible,
especially above 1T.

Fig. 6 (top) presents the measured longitudinal (along RD)
component of the magnetostriction strain with magnetic field
and uniaxial stress applied in this same direction [39]. The

Fig. 6. Comparison between measured (top) [39] and modeled (bottom)
magnetostriction strain along RD under uniaxial stress. Both magnetic field
and stress are applied along RD. In-plane stress tensor in Voigt notation.

model [Fig. 6 (bottom)] captures both the trend under uniaxial
stress and the rotation mechanism under a high field.

The measured magnetostriction [Fig. 6 (top)] is nega-
tive at high tension (above 15 MPa). This behavior can
be attributed to the morphic effect [48], [49], in which a
nonmonotonic behavior of magnetization and magnetostriction
strain under stress occurs. A higher-order development of
the magneto-elastic energy can reproduce this behavior in
modeling [48], to the price of additional material param-
eters. However, this approach has limitations for modeling
magnetostriction under high stress. Additional considerations
on the magneto-elastic energy can be included to correct
this drawback and are addressed in [49]. In this work, only
the first-order development of the magneto-elastic energy is
considered, which results in magnetostriction close to zero
under high tension before the rotation mechanism.

B. Irreversible Behavior Parameters

The distribution ω(κ) can be identified based on the pro-
tocol presented in [50] and [51] for the stress-free case. For
simulation purposes, the continuous distribution is discretized
into 25 cells. More details about the identification procedure
are presented in Appendix B.

From now on, the identified pinning field for the stress-free
case will be denoted κk(0). As proposed in [36], the evolution
of the pinning parameter under stress can be defined as

κ(σ ) = a(σeq)κ
k(0), with a(σeq) =

Hc(σ )

Hc(0)
(15)

with a(σeq) identified from uniaxial stress measurements of the
coercive field Hc, and σeq is an equivalent stress. The effects
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Fig. 7. Measured coercive field characteristic under uniaxial stress applied
along RD for the setups presented in [21] and [39].

of shear with respect to the magnetic field are neglected in
the equivalent stress of [30], previously considered in [36]
to evaluate the coercive field evolution under uniaxial stress.
In this work, the equivalent stress proposed in [32] is used,
which allows modeling the influence of different shear modes
on the coercive field. It is defined as

σeq =


r −

√
e⃗ t

(
r I −

3
2

d
)2

e⃗, if e⃗ t de⃗ ≤
2r
3

r +

√
e⃗ t

(
r I −

3
2

d
)2

e⃗, otherwise

(16)

with e⃗ the unit vector that defines the direction of H⃗ , e⃗ t

the transpose operator, and I the second-order identity tensor.
Another material parameter to identify, r is the value of stress
corresponding to the maximum permeability in a uniaxial
configuration. d is the deviatoric part of the stress tensor
defined as

d = σ −
1
3

tr(σ )I (17)

with tr(σ ) being the trace operator. The material parameter r
can be estimated from the permeability in the region around
the coercive field. From the measurements of [39], r is
identified as 10 MPa.

The measured coercive field evolution under uniaxial stress
for both experimental setups [21], [39] is presented in Fig. 7.
It can be noted that despite the common trend under stress,
the results differ on the level of the coercive field. This can
be attributed to differences in the preparation of samples for
uniaxial and multiaxial tests. For example, in the multiaxial
setup, the placement of the B-coil involves drilling holes in
the sample. In this work, the measurements of the coercive
field presented in [39] will be used for the identification of
a(σeq) but shifted by 1Hc—the coercive field difference for
the stress-free case, to match with the experimental conditions
of [21]. This choice is made because the measurements of [39]
cover a wider range of stress levels.

The identification of a(σeq) is made by using the measure-
ments along RD presented in [39] but shifted by 1Hc. In the
interpolation interval ([−40, 100] MPa), a(σeq) is assumed as
a piecewise linear function whose shape is presented in Fig. 8.
Beyond the measurement range, we consider this function as

Fig. 8. Identified a(σeq) function from measurements along RD presented
in [39] shifted according to [21]. The boxes indicate the experimental data
used for the interpolation of a(σeq).

Fig. 9. Comparison between measured [21] (top) and modeled (bottom)
hysteresis curves (at 1T) under uniaxial stress and field applied along RD.
In-plane stress tensor in Voigt notation.

a constant with coercive field value defined by the maximum
compression and the maximum tension cases.

IV. VALIDATION

A. Uniaxial Mechanical Stress

Considering the magnetic field and uniaxial stress applied
along RD, in Fig. 9, the measurements presented in [21]
are compared with the modeling results. The model captures
the general trend under uniaxial stress. Differences are more
evident when looking at the shape of the hysteresis loops,
where it is a parallelogram format of the modeling results,
especially in tension.

The model adequately reproduces the hysteresis losses when
the uniaxial stress is applied either along RD or TD, as shown
in Fig. 10.
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Fig. 10. Hysteresis losses (at 1T) with field applied along RD and under
uniaxial stress. Measurements (markers) with stress along RD and TD [21]
and modeling results (solid lines). In-plane stress tensor in Voigt notation.

Fig. 11. Comparison between measured [21] (top) and modeled (bottom)
hysteresis curves (at 1T) under uniaxial stress and field applied along TD.
In-plane stress tensor in Voigt notation.

When the field and uniaxial stress are applied along TD,
Fig. 11 shows the comparison between measurements [21]
(top) and model (bottom). The definition of the pinning field as
a function of equivalent stress allows capturing the evolution
of the coercive field for this situation with field and stress
applied along TD.

The hysteresis losses for the magnetic field applied along
TD are presented in Fig. 12. Despite some differences (about
17% for 0 MPa), the model reasonably predicts the loss
evolution when the uniaxial stress is applied either along RD
or TD. It is important to note that the hysteresis parameters
were identified by using measurements along RD. Therefore,
this is a blind prediction test for which the model shows its

Fig. 12. Hysteresis losses (at 1T) with field applied along TD and under
uniaxial stress. Measurements (markers) with stress along RD and TD [21]
and modeling results (solid lines). In-plane stress tensor in Voigt notation.

Fig. 13. Comparison between measured [21] (top) and modeled (bottom)
hysteresis loops (at 1T) under biaxial stress with field applied along RD. In-
plane stress tensor in Voigt notation.

capability to capture the tendency of losses under uniaxial
loading.

V. MULTIAXIAL MECHANICAL STRESS

Considering a biaxial stress loading and the magnetic field
applied along RD, the measured [21] hysteresis loops are
presented in Fig. 13 (top). The modeling results in Fig. 13 (bot-
tom) show that the model captures the degradation under shear.
However, the modeled hysteresis loop under bi-compression
presents curvatures that are not observed in the measurements.
One hypothesis for this difference is that in the simplified
approach presented here, the mechanical stress is taken as
homogeneous in the polycrystal, which is not the case in a
real material.
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Fig. 14. Percentage variation of the hysteresis losses compared to the
stress-free case at 1T. Magnetization along RD, and under biaxial stress.
Measurements [21] (left) and model (right).

The variation of the hysteresis losses 1w due to the
application of stress is evaluated by

1w =

[
w([σ11 σ22 σ12])− w([0 0 0])

w([0 0 0])

]
100 (18)

where w([0 0 0]) and w([σ11 σ22 σ12]) are the hysteresis losses
for the stress-free case and under biaxial stress, respectively,
in Voigt notation. Fig. 14 shows this percentage variation
for both measurements [21] and model. Notably, the model
captures the strong increase in hysteresis losses under shear
when compression is applied along RD. Also, the model shows
the tendency of a decrease in hysteresis losses under shear
when traction is applied along RD.

The error ehyst between measured wmes and modeled wmod
hysteresis losses is evaluated as

ehyst =
wmod − wmes

wmes
. (19)

This comparison indicator is presented in Fig. 15. Overall,
the model is capable of modeling the hysteresis losses under
biaxial stress, with main differences (around 15%) in the case
of bi-compression. The difference in this biaxial configuration
is explained because the model overestimates the degradation
in the magnetization, as observed in Fig. 13 (bottom).

For a magnetic field applied along TD, the predicted hys-
teresis loops are presented in Fig. 16. Although the tendency of
degradation under biaxial stress is captured, some differences
are observed in the shape of the hysteresis loops. This is
particularly problematic in the case of bi-tension.

Fig. 17 shows that the trend of hysteresis losses, compared
to the stress-free case, is reasonably modeled. It is observed
that shear (with compression applied along TD) increases the
hysteresis losses of the material.

The error in the hysteresis losses between measurements
and model is presented in Fig. 18. Important differences are
seen, especially under bi-tension. For this loading, a significant
difference in the modeled coercive field (about 25%) causes a
large error in the simulated hysteresis losses.

The percentage variation of hysteresis losses with magneti-
zation along RD and TD is shown in Fig. 19. This comparison
indicator highlights the anisotropy effect. The modeling results

Fig. 15. Percentage error between measured and modeled hysteresis losses
(at 1T) under magnetization along RD and biaxial stress.

Fig. 16. Comparison between measured [21] (top) and modeled (bottom)
hysteresis loops (at 1T) under biaxial stress with field applied along TD. In-
plane stress tensor in Voigt notation.

exhibit less anisotropy than the measurements, especially in
the case of bi-tension. Some factors may contribute to this
significant difference, such as the value chosen for λ100, the
choice of the pinning parameter identified from measurements
along RD only, or imperfections in the simplification of the
texture. Moreover, as shown in Fig. 5, for maximum induction
of 1T, the anisotropic effects are weak compared to higher
induction levels.

The modeled magnetic response under the shear mode
σ = [0 0 σ12] and magnetization along RD is shown in
Fig. 20 (bottom). It is noted that the model underestimates
the degradation of magnetization, which is more evident in
the measurements [21], especially under σ12 = −30 MPa.
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Fig. 17. Percentage variation of the hysteresis losses compared to the
stress-free case at 1T. Magnetization along TD and under biaxial stress.
Measurements [21] (left) and model (right).

Fig. 18. Percentage error between measured and modeled hysteresis losses
(at 1T) under magnetization along TD and biaxial stress.

Fig. 19. Percentage variation of hysteresis losses with magnetization along
TD compared to magnetization along RD.

The limitation of the model to represent the degradation under
this shear mode results in important differences, particularly
in the region of the remanent induction. Using the equivalent
stress [32] allows capturing the evolution of the coercive field
for this mechanical configuration, as observed in Fig. 21, for
magnetization along RD or TD.

Fig. 20. Comparison between measured [21] (top) and modeled (bottom)
hysteresis loops (at 1T) under shear with field applied along RD. In-plane
stress tensor in Voigt notation.

Fig. 21. Coercive field evolution at 1T under different levels of shear.
(a) Magnetization along RD. (b) Magnetization along TD.

Fig. 22 presents the percentage variation of the losses
compared to the stress-free case when the magnetization is
along RD [Fig. 22(a)] and when the magnetization is along
TD [Fig. 22(b)], both under shear. The model reproduces the
trend of hysteresis losses increasing depending on the applied
stress. However, the model overestimates the level of losses
under this shear mode. Moreover, comparing Fig. 22(a) and
(b) highlights the anisotropy of the material.

VI. CONCLUSION

In this article, an extension of a vector-play model under
magneto-elastic loadings has been tested under biaxial stress
conditions. A multiscale approach models the reversible
behavior, in which homogeneous stress and magnetic field are
considered at the RVE scale. Using parameters identified from
uniaxial measurements along one direction only, the model
captures the trend of the hysteresis losses under biaxial stress
when the magnetization is along RD (with errors lower than
15%) or TD (with error lower than 25%). Considering the
crystallographic texture, the anisotropic effects, even weak in
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Fig. 22. Percentage variation of the hysteresis losses compared to the
stress-free case at 1T under different levels of shear. (a) Magnetization along
RD. (b) Magnetization along TD.

modeling, slightly change the magnetic response. The use
of localization schemes in defining the magnetic field and
stress at the grain scale could improve the modeling results,
to the price of a significant increase in the simulation time.
The proposed model is predictive because it can be applied
to a more extensive range of mechanical stresses—inside the
elastic limit—and amplitudes of induction than the ones used
for parameter identification. The strategy presented in this
work can be applied in the simulation of electrical machines
subjected to a multiaxial stress state to have an optimal design
of its ferromagnetic parts. Future works include the analysis
of the model under a magneto-elastic loading with a rotating
field.

APPENDIX A
ALGORITHM OF THE MODEL

The main algorithm of the vector-play model is presented
below. The subroutine MSM evaluates the reversible behavior.
The parameters are described in Section II.

Algorithm 1 Algorithm of the Model

κ, ω, Ms, λ100, λ111, As, K1, K2 ; /* Mat. param.

*/
H⃗ , σ ; /* Magneto-elastic loading */
0⃗← H⃗ rev(p) ; /* Initialization */
for k = 1toN do

if ∥H⃗ − H⃗ k
rev(p)∥ > κk then

H⃗ k
rev ← H⃗ − κk

H⃗ − H⃗ k
rev(p)

∥H⃗ − H⃗ k
rev(p)∥

else
H⃗ k

rev ← H⃗ k
rev(p)

end
M⃗k, ϵµ,k

←

MSM(H⃗ k
rev, σ , Ms, λ100, λ111, As, K1, K2)

M⃗ ← M⃗ + ωk M⃗k

ϵµ
← ϵµ

+ ωkϵµ,k

end

APPENDIX B
PINNING FIELD PARAMETERS

For the identification of the distribution ω(κ), a set of
measured coercive fields under several amplitudes of the

Fig. 23. Stress-free hysteresis loops under increasing magnetic field applied
along RD.

Fig. 24. Identified probability distribution for the stress-free case.

magnetic field is required [50]. The hysteresis loops used for
the identification of ω(κ) are shown in Fig. 23 for applied
field and measurements along RD. The identified pinning field
distribution is presented in Fig. 24.

For numerical purposes, the continuous distribution pre-
sented in Fig. 24 is discretized as proposed in [50] into
25 cells.
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