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ABSTRACT Accurate modeling of the coupling between mechanical and magnetic behavior is a key
challenge for designing many electromagnetic devices. The requirements for such modeling are notably
the ability to consider multiaxial configurations, thermodynamic consistency to allow the calculation of
losses, and the implementability into structural analysis tools. So far, the modeling approaches available in
the literature do not usually combine these three features simultaneously. In this paper, for the first time, the
influence of mechanical stress on the magnetic hysteretic behavior is modeled through the association of a
reversible simplified multiscale approach and a macroscopic energy-based magnetic hysteresis model in a
vector-play form. A phenomenological description of the dissipation parameters under mechanical stress
is proposed. The non-monotonic effect of tensile stress on the magnetic permeability is modeled using
a second-order development in the magneto-elastic energy. Material parameters for both reversible and
irreversible behavior are identified from experimental characterization under mechanical stress performed on
a DC04 electrical steel. The experimental tests include anhysteretic and hysteretic measurements. Modeling
results of the anhysteretic magnetic permeability, the coercive field, and the remanent induction under several
levels of peak magnetic field and uniaxial mechanical stress are satisfactorily compared with those obtained
experimentally. Themodel is shown to reasonably predict the hysteresis losses under tensile and compressive
stress, as well as the response of the material under a complex magnetic field waveform with harmonic
content.

INDEX TERMS Magneto-elastic behavior, hysteresis model, multiscale modeling, electrical steel.

I. INTRODUCTION
Mechanical stresses strongly influence the losses of magnetic
materials. Such effects have been notably illustrated in elec-
trical steels under uniaxial [1], [2] or biaxial [3] mechani-
cal loadings. Due to this coupled behavior, the overall effi-
ciency of electromagnetic devices can be altered by different
mechanical stress sources, such as centrifugal forces [4],
or shrink-fitting [5]. Several methods to model the coupled
magneto-mechanical hysteretic behavior are presented in the
literature and can be defined from either a macroscopic
approach, a multiscale approach, or a combination of both.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ladislau Matekovits .

In macroscopic models based on the classical scalar
Jiles-Atherton (JA) approach - with anhysteretic behavior
described by the Langevin function - the effects of stress
on the magnetic behavior can be defined by an equivalent
field incorporated in the effective field definition. Such an
approach was used when uniaxial stress is applied along the
magnetic field [6], [7], and when an angle between uniaxial
stress and the magnetic field is considered [8]. The uniax-
ial mechanical limitation of these extensions of JA model
can be overcome by considering the reversible behavior
through the minimization of a Helmholtz free energy density,
which is defined as a function of scalar invariants [9], [10].
In this approach, the scalar pinning parameter of the original
JA model is replaced by a stress-dependent second-order
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tensor [11], [12]. One drawback of this approach is the need
for several measurements under stress to identify the param-
eters of the Helmholtz free energy function. Whereas the
magnetic JA model is easy to implement, and its parameters
are relatively easy to identify, some limitations were observed
in the representation of asymmetric minor loops [13] and in
the definition of the anhysteretic behavior as a function of
an effective field, which results in non-physical reversible
behavior [14].

Another macroscopic approach consists of a magneto-
elastic extension of the classical scalar Preisach magnetic
hysteresis model. It can be defined by introducing stress in
the effective field definition [15], or considering the influence
of stress in each hysteron operator [16], or in a probability
distribution function [17]. The mathematical approach yields
parameters that are difficult to identify from measurements.

A macroscopic magnetic hysteresis model based on an
analogy with plasticity is presented in [18]. The magnetic
energy is represented by analytical expressions. A switch-
ing surface with a radius determined by the coercive field
captures the hysteretic behavior. However, complementary
parameters fitted on experimental data are required to capture
the first magnetization curve and asymmetric minor loops.
Following this approach, in [19] a magneto-elastic thermody-
namic framework is presented, and the main focus is on the
response of magnetorheological elastomers with permanent
magnets particles.

The second class of modeling concerns multiscale
approaches. Three scales are considered: the magnetic
domain, the single-crystal (or grain), and the represen-
tative volume element (RVE or polycrystal) scale [20].
Magnetic and mechanical quantities are defined at dif-
ferent scales through localization and homogenization
schemes. Originally proposed to model the anhysteretic
magneto-mechanical behavior [20], the approach shows good
prediction capabilities with a clear protocol for parameter
identification. A multiscale model with hysteresis is pro-
posed in [21] with the inclusion of a hysteresis energy term
in the domain free energy definition that depends on the
previous state of magnetization. As pointed out in [22],
the localization process in multiscale approaches can result
in time-consuming finite element simulation of electromag-
netic devices. This can be overcome, in the reversible case,
by using simplified versions of the full multiscale approach.
A simplification consists in considering an equivalent sim-
plified crystallographic texture with a reduced number of
crystal orientations, leading to a simplified texture multi-
scale model (STMSM) [22]. A further simplification con-
sists in representing the macroscopic behavior using a fic-
titious equivalent single-crystal, similar to the Armstrong
approach [23], leading to the so-called simplified multiscale
model (SMSM) [24], [25]. This latter option, when limit-
ing the number of possible domain orientations to six, can
provide analytical formulas for the magneto-elastic behav-
ior [26], [27].

In an analogous multiscale approach called assembled
domain structure model (ADSM), each ADSM is made of
a simplified domain structure model (SDSM) formed by
six domains. The magnetization direction of each domain is
related to the easy axes of the material. A minimization of the
energy balance (which comprises a magneto-elastic term) in
a SDSM structure results in the magnetization state [28]. The
hysteresis effects are reproduced by considering a pinning
field defined by a Gaussian distribution [29].

The last class of magneto-mechanical hysteresis models
consists of a combination approach: the reversible behavior
is modeled with a magneto-mechanical multiscale approach,
and the magnetic hysteresis is considered from amacroscopic
description. In this case, examples are the combination of the
full multiscale approach and Hauser model [30], the SMSM
with the magnetic JA model [22], [31], [32], and the ana-
lytical multiscale model with the Kádár product model [33]
or with the JA model [34]. Hysteresis effects are considered
in the Armstrong model by defining a macroscopic energy
dissipation term related to the defects of a material, which
constrains the domain wall motion [35]. Improvements of
this approach to represent asymmetric minor loops and an
extension to consider variable stress under constant magnetic
field are presented in [36].

These three classes here introduced contemplate only some
examples of magneto-mechanical hysteresis models. Besides
these classes, phase-field approaches can be highlighted. This
modeling aims to describe the spatial and temporal evolu-
tion of magnetic domains in a microstructure. Numerical
methods are used to minimize an energy function related
to the domain wall motion of a discretized ferromagnetic
material [37], [38]. This approach gives detailed information
about the microstructure of a ferromagnetic material under
magnetic and mechanical loadings. When the macroscopic
response is sought, this modeling increases the computational
cost.

Although many hysteretic magneto-elastic modeling
approaches are available in the literature, as described above,
none of them simultaneously combines three key features
for the numerical analysis of electromagnetic devices. The
first one is the ability to consider fully multiaxial loadings
as encountered in practical applications, the second is ther-
modynamic consistency to compute losses accurately, and
the last is the implementation into numerical analysis tools,
which requires low computation time for behavior evaluation.
In this paper, for the first time, a combination of a SMSMwith
an energy-based magnetic hysteresis model in a vector-play
form [39], [40] is proposed. This rate-independent magnetic
hysteresis model is based on an energetic description at the
macroscopic scale and defined directly in a vector form. The
association with the SMSM allows multiaxial stress configu-
rations. The parameters are evaluated from a magneto-elastic
characterization performed on DC04 steel under compression
and tension, and the performance of the model is evaluated
on a different set of experimental data.
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II. MAGNETO-ELASTIC MODEL
The thermodynamics basis of the coupled magneto-elastic
model is addressed in this section with a distinction
between reversible and irreversible processes. The relation-
ship between magnetic induction EB, magnetic field EH , mag-
netization EM , magnetic polarization EJ and vacuumpermeabil-
ity µ0 is expressed as:

EB = µ0

(
EH + EM

)
= µ0 EH + EJ . (1)

A. THERMODYNAMICS ASPECTS
In the framework of continuum thermodynamics, the first
law of thermodynamics in a ferromagnetic material at the
macroscopic scale can be written as [40]:

•

u = EH ·
•

EB+ σ :
•

ε − div Eq, (2)
•

u is the time-derivative of the internal energy density, the

dot product EH ·
•

EB represents the magnetic power density, the
double-contraction product σ :

•

ε between the second-order
tensors of mechanical stress σ and strain rate

•

ε represents the
mechanical power density, and Eq the heat flux. The second
law of thermodynamics can be expressed as [41]:

T
•

s ≥ − div Eq+ gradT ·
(
Eq
T

)
, (3)

with s the entropy and T the temperature. Defining the
Helmholtz free energy density as f ≡ u − Ts, combining
(1), (2) and (3), and neglecting spatial and temporal ther-
mal variations, the Clausius-Duhem inequality (CDI) for the
magneto-mechanical case writes:

D = EH ·
•

EJ + σ :
•

ε −
•

f ≥ 0, (4)

with D the dissipation. The term µ0 EH ·
•

EH is omitted because,
in general, it is negligible in comparison to the contribution

of EH ·
•

EJ to the magnetic power density. A summary of
the thermodynamics laws and approximations considered is
presented in Table 1.

TABLE 1. Summary of the thermodynamic laws for the magneto-elastic
case.

Considering only the reversible behavior (D = 0), the
Legendre transformation allows writing (4) as a function of

FIGURE 1. Scales involved in the reversible modeling.

the time-derivative of the Gibbs free energy
•

g:

•

g = −
•

EH · EJ −
•

σ : ε. (5)

B. REVERSIBLE BEHAVIOR
The reversible behavior is modeled using a simplified mul-
tiscale approach [25]. The scales considered are represented
in Figure 1. In this work, we are interested in modeling the
behavior of the RVE. The following assumptions are made:
(a) the material behavior is isotropic, (b) demagnetizing
effects are negligible, and (c) both applied magnetic field
and mechanical stress are homogeneous at the domain scale
(denoted by α).

In a domain family with direction Eα, the polarization EJα is:

EJα = µ0MsEα = µ0Ms [α1 α2 α3]t , (6)

with Ms the saturation magnetization. The magnetostriction
strain ε

µ
α for isotropic behavior is:

εµα =
3
2
λs

(
Eα ⊗ Eα −

1
3
I
)
, (7)

where λs denotes the maximum magnetostriction strain, ⊗
represents the tensor product, and I is the second-order iden-
tity tensor. The energy variation dgα for a time step dt at the
domain scale is written [42]:

dgα = −EJα · d EH − εα : dσ . (8)

with εα the total strain at the domain scale. The magnetic
part of the Gibbs free energy is defined by the integration over
the magnetic field path:

gmagα = −EJα · EH . (9)

Considering small perturbations: εα = εeα+ε
µ
α , with εeα the

elastic strain. Supposing uniform strain in the single-crystal,
the magneto-elastic part of the Gibbs free energy is written
by integration over the stress path [42]:

gel(1)α = −εµα : σ . (10)

It was shown in earlier works that the effect of stress on
magnetization is non-monotonic [30], [42] and this simplified
approach does not capture such a tendency. This drawback
can be solved by adding a stress-dependent demagnetizing
term in the energy balance [30], or by adding a second order
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term - quadratic in stress - in the magneto-elastic energy
definition [42]. We choose here this second option. The
magneto-elastic energy is therefore defined as:

gelα = gel(1)α + gel(2)α

= −σ : εµα −
3
2
λ′sσ

2
eq

(
Eα ⊗ Eα −

1
3
I
)
:

(
Eh⊗ Eh

)
, (11)

with gα = gmagα + gelα . In this definition, the second-order
magnetostriction constant λ′s is introduced and the equivalent
stress σeq [43] is written in terms of Eh = EH/‖ EH‖ and the
deviatoric part of σ :

σeq =
3
2
Eht
(

σ −
1
3
tr(σ )I

)
Eh. (12)

The magnetostriction strain is composed of the sum of (7)
with a second-order magnetostriction strain ε

µ(2)
α :

εµ(2)α = −
∂gel(2)α

∂σ
. (13)

Considering a particular case under uniaxial stress σeq =
σ11 applied along the magnetic field direction Eh = [1 0 0]t ,
the only non-null component of ε

µ(2)
α is:

εµ(2)α11
=

3
2

(
2λ′sσ11

)
(α21 − 1/3). (14)

Therefore, introducing a second-order term in the magneto-
elastic energy results in a magnetostriction strain that is
stress-dependent. This allows capturing the non-monotonic
effect of tensile stress on the magnetic behavior [42], [44].
λ′s can be defined as (see Appendix A):

λ′s = −
λs

2σm
, (15)

where σm is the value of the applied stress corresponding to
the maximum magnetic permeability. Combining (11) and
(15), the elastic part of the Gibbs free energy is:

gelα = −σ : εµα +
σ 2
eq

2σm
εµα :

(
Eh⊗ Eh

)
. (16)

The volume fraction pα of a domain family with direction
Eα is evaluated using a Boltzmann relation [45]:

pα =
exp (−As gα)∑
α

exp (−As gα)
, (17)

where the parameter As is proportional to the initial suscepti-
bility χ0 of the stress-free anhysteretic curve [20]:

As =
3χ0
µ0M2

s
. (18)

In this simplified approach, the domain orientations are
defined from a discretization of a unit sphere [46]. Themacro-
scopic polarization and macroscopic strain are:

EJ =
∑
α

pαEJα (19a)

ε =
∑
α

pαεα. (19b)

C. IRREVERSIBLE PROCESS AND VECTOR-PLAY MODEL
In a reversible framework at a macroscopic scale, a reversible
magnetic field EHrev and a reversible stress σ rev are defined:

EHrev ≡
∂f

∂EJ
(20)

σ rev ≡
∂f
∂ε
. (21)

Combining (20) and (21) with the Clausius-Duhem inequality
(4) yields:

D = ( EH − EHrev) ·
•

EJ + (σ − σ rev) :
•

ε ≥ 0. (22)

In the dissipative framework, an irreversible field EHirr =
( EH − EHrev) and an irreversible stress σ irr = (σ − σ rev) are
introduced. A simplification consists in considering mechan-
ical stress only in a reversible way, and as a result σ irr = 0.

The dissipation is modeled by analogy with a mechanical
dry-friction system [39]. The defects that pin domain walls
at specific positions are represented by a pinning field κ ,
a positive scalar in the isotropic case. The dissipation writes:

D = κ‖
•

EJ‖ = EHirr ·
•

EJ . (23)

As in the reversible case - where a relation between EHrev and
f was defined - EHirr can be written as a function of the partial

derivative of D. Since D is not differentiable at
•

EJ = E0, the
subdifferential of a convex function is considered [39], [47]:

∂D

∂

•

EJ
=


EHirr , ‖ EHirr‖ ≤ κ if

•

EJ = E0

EHirr = κ

•

EJ

‖

•

EJ‖
otherwise.

(24)

This implies that for ‖ EHirr‖ < κ the polarization EJ will
remain constant until ‖ EHirr‖ = κ [47]. From the previous
definitions:

( EH − EHrev − EHirr ) = E0. (25)

The pinning parameter in real materials can be represented
by a statistical distribution of pinning fields κk with N− dry-
friction systems (or cells) with normalized weights ωk that
verify

∑N
k=1 ω

k
= 1 [40]. At each cell k , the polarization

EJ k ( EH k
rev, σ ) and strain εk ( EH k

rev, σ ) are related to the homoge-
nized quantities:

EJ =
N∑
k=1

ωk EJ k ( EH k
rev, σ )

ε =

N∑
k=1

ωkεk ( EH k
rev, σ ). (26)

The following simplification can be made: the direction of
EHirr is written in terms of the reversible field at the previous
time step EH k

rev(p). This results in a vector-play model [39].
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FIGURE 2. Principle of the stress-dependent hysteresis model. The
material parameters are indicated in red.

Using this approximation, the explicit update procedure of
EH k
rev at each cell is:

EH k
rev =


EH k
rev(p) if ‖ EH − EH k

rev(p)‖ ≤ κ
k

EH − κk
EH − EH k

rev(p)

‖ EH − EH k
rev(p)‖

otherwise.

(27)

The field EH k
rev and σ are the inputs of the SMSM. EJ k ( EH k

rev, σ )
and εk ( EH k

rev, σ ) are the outputs. EJ and ε are then defined

by (26). EB is given by (1). A simplified schematic of the
algorithm is presented in Fig. 2.

III. EXPERIMENTAL SETUP
The apparatus used to carry out the magneto-mechanical
characterization of a sample of DC04 steel (250 mm x
20 mm x 2 mm) under uniaxial stress is detailed in [48]
and shown in Fig. 3. The mechanical setup is composed of
a tension/compression machine Zwick/Roell Z030 with the
possibility to control in force or displacement. A force control
is used with a resolution and accuracy of 0.2 N± 0.06%, and
force measurements are performed using a 10 kN load cell
(strain gauge sensor TC-LC010kN).

The magnetic setup is composed of two U-shaped Fe-Si
yokes to ensure the closure of the magnetic flux. A Kepco 72-
14MG amplifier, that can deliver 14 A and 72 V with 0.2%
accuracy, supplies current to an excitation coil (28 turns)
positioned around the sample. The current is measured with
a LA 125-P transducer with 0.6% accuracy. A Teslameter
FM302 and a transverse Hall probe 20 mT AS-VTP, which
can operate from DC to 1 kHz, measure the magnetic field
with an accuracy of 0.5 % and measured noise of 19 A/m
in the range of 0 - 15.9 kA/m. The time integration of the
induced voltage of a B-coil (85 turns) wound around the
sample (measurement area of Fig. 3) results in the measured
induction with measured noise of about 0.1 mTwith accuracy
of 0.2% [48].

Themagnetostriction strain is measuredwith a strain gauge
rosette glued on the measurement area surface (Fig. 3) of the
sample. The signal is amplified with a 4-channel strain gauge
conditioner Vishay 2120 B with about 0.5% of accuracy and
measured noise of about 10-6. A DS 1006 dSPACE processor
board performs the acquisition and control of signals with
a sampling frequency of 50 kHz. More information on the
control and acquisition system can be found in [48]. A mea-
surement reproducibility error is found to be about 0.5% in
the magnetic field and 0.3% in the induction.

FIGURE 3. Experimental setup for magnetic characterization under
uniaxial stress.

The procedure to measure the anhysteretic magnetic
behavior is detailed in [49]. The controlled current is set as an
exponentially decaying sine wave, defined with a frequency
of 1 Hz, superimposed to a bias level. This approach is
repeated at several bias levels and under mechanical com-
pressive (-) and tensile (+) uniaxial stresses that vary between
-100 MPa and 100 MPa. The stress levels are defined to be
below the yield stress of the sample (120 MPa) and the Euler
buckling critical load estimated as -296 MPa.

The hysteresis measurements are performed at the same
typical levels of stress and electric current, but the frequency
of the electrical loading is reduced to 25 mHz. Indeed, it was
observed that it is the frequency at which the quasi-static
regime is attained (see Appendix B). The procedure to cor-
rect the drift in the measured induction is presented in
Appendix C. Table 2 shows the quantities involved in the
characterization process.

The magnetic quantities Hc (coercive field) and Br (rema-
nent induction) are evaluated by a linear regression around
the point of interest - B = 0 for Hc and H = 0 for Br .
A post-processing filtering is applied to the measurements
using a 50-point moving average on the cycle. The error
bars take into account the noise and reproducibility presented
before. Measurement results are discussed in section V when
compared to modeled estimates.

IV. IDENTIFICATION OF MATERIAL PARAMETERS
The magneto-elastic model is entirely defined by the param-
eters of the anhysteretic behavior, here based on the SMSM,
and the probability distribution of pinning field ω(κ). The
parameters are evaluated from anhysteretic and hysteretic
characterizations under uniaxial stress.
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TABLE 2. Summary of the measured quantities during experiments.

FIGURE 4. Comparison of measured (error bars) and modeled (solid
lines) anhysteretic relative magnetic permeability for different values of
applied magnetic field. The maximum anhysteretic permeability is
observed at σm = 40 MPa.

A. REVERSIBLE PARAMETERS
The reversible parameters Ms, λs, and χ0 are identified from
anhysteretic characterization without applied stress. Ms is
the maximum magnetization measured on the stress-free
M -H curve. λs is themaximum longitudinalmagnetostriction
strain obtained on the stress-free magnetostriction curve. χ0
is the slope, at H = 0, of the anhysteretic stress-free M -H
curve. As is calculated from χ0 by using (18).
Fig. 4 presents the anhysteretic relative magnetic perme-

ability µanhr as a function of the applied stress for different
values of the magnetic field. A non-monotonic effect of
tensile stress on the reversible behavior is observed. Such
non-monotonicity justifies the use of a second-order term
in the magneto-elastic energy. This approach introduces an
additional material parameter λ′s (see (11)) which can be
identified from (15).

The identified reversible parameters are presented in
Table 3. The modeled anhysteretic behavior results in Fig. 5
(bottom) and shows a good agreement with the measure-
ments in Fig. 5 (top). Fig. 4 shows that the SMSM with a
second-order term can capture the reversible behavior and the
non-monotonic effect. Differences become apparent, espe-
cially for tensile stress of 100MPa, where the model underes-
timates the relative permeability at low field. Such a tendency
is inevitable with the proposed description (second-order

TABLE 3. Parameters of the SMSM.

FIGURE 5. Effect of uniaxial stress on the anhysteretic behavior:
Measurements (top) and model (bottom).

elastic energy term), which imposes the permeability curve
to be symmetric with respect to σm, as shown in Appendix A.
A possibility to improve this drawback would be using
a stress-dependent demagnetizing term in the free energy,
as proposed in [30], instead of or as a complement to the
second-order approach. Another option would be introduc-
ing higher order terms in the elastic energy, to the price of
additional material parameters.

B. DISSIPATIVE PARAMETERS
Considering a magnetic case with applied field along Eh =
[1 0 0]t , an identification method of ω(κ) is presented
in [50], [51]. This procedure is based on the homogenization
of reversible field, where it is defined an auxiliary function
F(H ) (see Appendix D). The second derivative of F(H ) is
the probability distribution ω(κ). The identification of F(H )
(as explained in Appendix D) can be performed from a set
of measured Hc under increasing peak magnetic fields Hpeak .
These experimental measurements are presented in Fig. 6 for
the stress-free case. This curve is extrapolated outside the
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FIGURE 6. Experimental measurements of coercive field under increasing
magnetic field for the stress-free case.

FIGURE 7. Identified auxiliary function for the stress-free case, first and
second derivatives that represent the pinning field cumulative
distribution and probability distribution, respectively.

measured range using (28) [51]:

Hc(H ) = Hmin
c

(
H
Hmin

)2

if H < Hmin, (28)

whereHmin
c is the lower measured coercive field on the corre-

sponding peak magnetic field Hmin. The identified F(H ) and
its derivatives ∂HF(H ) and ∂2HF(H ), are presented in Fig. 7.
The derivatives are evaluatedwith a finite differencesmethod.
The non-zero component for κ(0) represents the bending of
Bloch walls [39]. The continuous probability distribution is
then discretized into 25 cells (see (45) in Appendix D).

FIGURE 8. Hysteresis curves under uniaxial stress: Measurements (top)
and model (bottom).

FIGURE 9. Function a(σ ) at several stress levels.

An applied compression increases the coercive field,
as observed in the measured hysteresis curves of Fig. 8 (top).
The pinning parameter κ is directly related to the coercive
field. We propose to model the stress dependence of dis-
sipation parameters as follows: starting from the identified
discrete pinning field distribution for 0 MPa, the weight ω is
kept constant under stress. The pinning field κ(σ ) evolves as:

κ(σ ) = a(σ )κ(0), (29)

with κ(0) the identified pinning field for 0 MPa, and a(σ )
a function that is fitted in order to match with the measured
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FIGURE 10. Comparison of measured (error bars) and modeled results (solid lines) of coercive field (top) and remanent induction (bottom) as a
function of uniaxial stress and under various peak magnetic fields. The red boxes (top) indicate the fitted values.

TABLE 4. Fitted parameters for a(σ ).

Hc(σ )/Hc(0). This coercive field characteristic under stress
is presented in Figure 9 in the case of uniaxial stress applied
parallel to the magnetic field direction. It can be noted an
exponential behavior of Hc under compression and a close
to constant behavior under tension. For other materials, such
as Fe-Si [52], the exponential tendency of the coercive field
under compression is also observed.

A phenomenological description of a(σ ) is then defined
by:

a(σ ) = a1 exp
(
− exp(a2 + a3σeq)

)
+ 1, (30)

with σeq the equivalent stress (12). The parameters a1,
a2 and a3 are fitted from four measured coercive fields
under 0 MPa, -20 MPa, -40 MPa and -100 MPa, respectively,
by using the Curve Fitting Toolbox of Matlab. The identified
parameters are presented in Table 4. Fig. 9 shows that (30) is
appropriate to represent the measured coercive field charac-
teristic under uniaxial mechanical loading.

The identification procedure of the dissipation parameters
can be summarized as follows: from the stress-free curve
of coercive field with increasing magnetic field, the method

presented in [50], [51] allows identifying ω(κ(0)). By using
standard measurements of coercive field under stress, the
function a(σ ) is fitted, and so the dependence κ(σ ) of (29)
is defined.

V. VALIDATION
The proposed magneto-elastic model results in the hysteresis
curves presented in Fig. 8 (bottom), and the tendency of
slant under compression - as observed in measurements of
Fig. 8 (top) - is captured by the simulation. However, the
model does not reproduce inflections in the hysteresis curve
- more evident under -100 MPa. This measured behavior
is attributed to the crystallographic texture, whereas in this
proposed model, only an equivalent single crystal represent-
ing the macroscopic behavior is considered. A simplified
texture multiscale model (STMSM) [22] may overcome this
limitation, but it is not treated in this work.

Fig. 10 (top) presents a comparison of the modeled coer-
cive field with the measured symmetric minor loops under
uniaxial stress. It is insisted here that the validation is per-
formed by comparison to the experiments that have not been
used for identification purposes. For the sake of clarity, the
measured values used for identification are explicitly labeled
in Fig. 10. Differences are observed in the major loop under
tensile stress (25% for 20MPa and 5050 A/m) but the general
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FIGURE 11. Measured hysteresis losses as a function of peak induction
for different uniaxial stress.

FIGURE 12. Prediction of hysteresis losses as a function of uniaxial stress
(solid lines). The experimental results (markers) are evaluated using
measured data from Fig. 11 and polynomial interpolation.

FIGURE 13. Applied magnetic field signal to simulate asymmetric minor
loops.

behavior under stress is captured by the simulation. The
second-order term in the magneto-elastic energy definition
(11) allows the representation of the non-monotonic effect of
tensile stress on the remanent induction Br as seen in Fig. 10
(bottom).

The measured hysteresis losses under uniaxial stress as a
function of the maximum induction are shown in Fig. 11,
where the usual behavior - an increase of losses with increas-
ing compression [1] - is observed.

The prediction of hysteresis losses under stress is plotted
in Fig. 12 by numerical integration of the surface of each
hysteresis loop and is presented as a function of the maximum

FIGURE 14. Hysteresis curves under uniaxial stress and considering the
magnetic field waveform of Fig. 13. Stress levels from top to bottom: -80
MPa and 80 MPa.

induction level. This calculation is a blind validation of the
modeling approach since no loss measurement was used for
material parameter identification. The modeling results show
that the tendency to increase losses under compression is
reproduced. Significant differences are seen mainly in the
major loop under high compression. As already discussed, the
SMSM does not consider the inflections in hysteresis curves
under compression, which explains the difference of about
30% for the worst case (-100 MPa and 1.7 T).

Fig. 13 shows a magnetic field waveform that allows pro-
ducing a material response with asymmetric minor loops
presented in Fig. 14. The comparison of measurements and
model is presented in Fig. 14 for two levels of uniaxial stress.
Under a tensile stress of 80MPa, because the hysteresis curve
is less slanted, only one asymmetric minor loop is clearly vis-
ible, with the others remaining in a region above 1000 A/m.
Again, this comparison is independent of the identification
process, so it can serve as a validation for the model. A good
agreement between the model and experiment is observed,
despite the harmonic content of the H waveform.

VI. CONCLUSION
In this paper, an extension of the energy-based vector-play
magnetic hysteresis model has been proposed for the first
time in order to incorporate the effect of stress on mag-
netization. This extension essentially consists of the asso-
ciation of the vector-play model with an anhysteretic sim-
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plified multiscale approach. This combination results in
a magneto-elastic vector model applicable to multi-axial
stress configurations. Stress-dependent dissipation parame-
ters can be identified from a fewmeasurements, mostly under
compression. An accurate prediction of coercive field and
remanent induction under stress were observed when com-
pared to experimental measurements performed on electrical
steel. The inclusion of a second-order development in the
magneto-elastic energy enables capturing the non-monotonic
evolution of the magnetic permeability under stress.

The magneto-elastic model can predict the general behav-
ior of hysteresis losses under mechanical loadings from a
small set of parameters and reasonably reproduce asymmetric
minor loops. This strategy can be an interesting approach
in the coupled magneto-elastic finite element simulation of
electromagnetic devices subject to multi-axial stress and fed
from a PWM (pulse width modulation) power converter. The
proposed model is fully multi-axial. However, it has been
validated so far only for uniaxial stress conditions. Valida-
tion under complex configurations, such as rotating fields
and/or biaxial mechanical loadings, is required. Moreover,
only static mechanical loadings have been considered. The
extension to dynamic mechanical loading is necessary to
cover the piezomagnetic behavior case. Such investigations
will be considered in future works.

APPENDIX A
IDENTIFICATION OF THE MAGNETOSTRICTION
CONSTANT λ′

s
The identification of the second-order magnetostriction con-
stant λ′s is obtained from the analysis of the analytical
expression of the anhysteretic relative magnetic permeability
µanhr (σ ). Consideringµanhr (σ ) for isotropic materials, and the
magnetic field in the direction of the uniaxial stress. The
starting point is the expression of the magnetization given
bellow (see (67) from [42]).

M=
∫ π

0

 Ms cosφe

(
3χ0H
Ms

cosφ+B(σ )(cos2 φ−1/3)
)

∫ π
0 e

(
3χ0H
Ms

cosφ+B(σ )(cos2 φ−1/3)
)
sin(φ)dφ

sinφdφ


(31)

where B(σ ) is:

B(σ ) = 1.5Asλ′s

(
σ 2
+ σ

λs

λ′s

)
= 1.5Asλ′s

((
σ −

(
−λs

2λ′s

))2

−

(
−λs

2λ′s

)2
)
. (32)

The quantity−λs/2λ′s (homogeneous to a stress) is denoted
by σm. It can be noticed that, for any stress σ , one has
B(σm + σ ) = B(σm − σ ). This shows that independently of
the magnetic field, the magnetization as a function of stress is
always symmetric with respect to σ = σm. Such symmetry is
naturally inherited by the relative permeability. Furthermore
to prove that µr is maximal at σm, we first carry out the

FIGURE 15. Coercive field evolution at several frequency levels.

integration with respect to φ in (31) which yields:

M = Ms

[ eB
(
e
3χ0H
Ms − e−

3χ0H
Ms

)
e

(
9H2χ20
4M2

s B

)
√
Bπ

(
erfi

(√
B− 3Hχ0

2Ms
√
B

)
+erfi

(√
B+ 3Hχ0

2Ms
√
B

))
−

3Hχ0
2MsB

]
, (33)

where erfi is the imaginary error function given as:

erfi(x) =
2
√
π

∫ x

0
et

2
dt. (34)

Upon taking the limit of ∂M/∂H at H → 0 one gets:

µanhr (σ )=1+3χ0

(
eB(σ )

√
B(σ )π erfi(

√
B(σ ))

−
1

2B(σ )

)
. (35)

This gives an analytical expression of the relative magnetic
permeability, in the case of isotropic materials when the
uniaxial loading is applied parallel to the magnetic field.
By studying the function µanhr (σ ), one can show that: (a) it
is maximal at σm = −λs/2λ′s, (b) it has σ = σm as an axis
of symmetry, (c) it has µanhr = 1 as a horizontal asymptote
and (d) equals 1 + χ0 for σ = 0 (using a second-order
Taylor series expansion). These characteristics explain the
bell shaped curve observed in Fig. 4 and allow an easy
identification of λ′s from the values of λs and σm.

APPENDIX B
DEFINITION OF THE QUASI-STATIC REGIME
A characterization without stress indicates that a frequency
of 1 Hz does not allow a quasi-static assumption for this
material sample, as seen in Fig. 15, where a significant change
is observed in the coercive field when comparing measure-
ments at 1 Hz and 25 mHz. The remanent induction (Fig. 16)
is less sensitive to changes in frequency for 0 MPa. The
hysteresis measurements under uniaxial stress are performed
considering that the frequency of 25 mHz allows reaching
the quasi-static regime. Such a value cannot be considered
general since it is dependent on the prescribed waveform for
the current, but it was empirically determined as relevant for
the measurements shown in this paper.
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FIGURE 16. Remanent induction evolution at several frequency levels.

FIGURE 17. Correction of drift in induction after the first magnetization.

APPENDIX C
CORRECTION OF DRIFT IN MAGNETIC INDUCTION
The integration DC drift - or a cumulative offset - in voltage
measurements can be related with thermal variation of elec-
tronic components [53]. This becomesmore problematic with
the choice of the frequency of 25mHz for the input waveform.
The drift in the measured induction Bmes is linearly corrected
with (36), considering the difference between two peaks: in
Fig. 17 they are taken as B(1)max at t = 0 s and B(2)max at t = 40 s,
with time difference denoted by 1t .

Bcor = Bmes +
t
1 t

(
B(1)max − B

(2)
max

)
. (36)

APPENDIX D
IDENTIFICATION OF THE PINNING FIELD DISTRIBUTION
The identification of the pinning field distribution was per-
formed following the procedure given in [50], [51]. Starting
from the demagnetized state, after the application of a unidi-
rectional magnetic fieldHa, the homogenized reversible field
is

Hrev(0→ Ha)=
∫
∞

0
max(Ha−κ, 0)ω(κ)dκ=F(Ha), (37)

where the max operation indicates that only the cells with
κ < Ha will be modified. An auxiliary function F(H ) is then

defined:

F(H ) ≡
∫ H

0
ω(κ)(H − κ)dκ, (38)

with first and second derivatives:

∂H F(H ) =
∫ H

0
ω(κ)dκ

∂2H F(H ) = ω(H ). (39)

From the previous magnetic state, if now themagnetic field
is decreased until the coercive field−Hc, with 0 < Hc < Ha,
the homogenized reversible field is [50] and [51]:

Hrev(0→ Ha→−Hc) = F(Ha)− 2F
(
Ha + Hc

2

)
. (40)

Because the magnetic polarization is null at the coercive
field J (Hr (0→ Ha→−Hc)) = 0 [50], [51]:

F(Ha)− 2F
(
Ha + Hc

2

)
= 0. (41)

Therefore, the identification of F(H ) can be performed
through experimental measurements of coercive field curve
under increasing magnetic field Hc(Hpeak ) [50]. The pinning
field distribution is evaluated from (39).

The steps to construct F(H ) are [50] and [51]:

• Starting from a saturating magnetic field Hs, where
Hc(Hs) = Hmax

c , from (38) is observed that F(Hs) =
Hs − Hmax

c , with Hmax
c =

∫ Hs
0 κω(κ)dκ .

• Because Hc(H ) < H :

H + Hc(H )
2

< H . (42)

The strictly decreasing series is defined:

Hn
=
Hn−1

+ Hc(Hn−1)
2

< Hn−1 (43)

with

F(Hn)
2
= F

(
Hn−1

)
. (44)

For numerical simulation purposes, a discrete approxi-
mation of ω(κ) can be evaluated. The magnetic field is
decomposed into N discrete parts and the discrete set
(ωk , κk )k=1,...,N is [50]:

ωk =

∫ H k

H k−1
ω(κ)dκ = ∂HF(H k )− ∂HF(H k−1)

κk =

∫ H k

H k−1 κω(κ)dκ∫ H k

H k−1 ω(κ)dκ
=

[H∂HF(H )− F(H )]H
k

H k−1

ωk
. (45)
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There is an error in the above article [1] when the com-
ponents of the second order magnetostriction strain tensor
ϵ
µ(2)
α are introduced in section II.B, just before equation (14).
It is stated that, in the case of a uniaxial stress tensor applied
parallel to the magnetic field (direction 1), the only non-null

component of ϵ
µ(2)
α is ϵ

µ(2)
α11 . Although the expression given

for ϵ
µ(2)
α11 by (14) in [1] is correct, the 11 component is not the

only non-null component of ϵ
µ(2)
α . The general expression of

ϵ
µ(2)
α is given by equation (1) below:

ϵµ(2)
α = −

∂gel(2)α

∂σ

=
9
2
λ′
sσeq

[(
α⃗ ⊗ α⃗−

1
3
I
)

:

(
h⃗⊗ h⃗

)] (
h⃗⊗ h⃗−

1
3
I
)
(1)

The particular case considered in [1], with h⃗ = [1 0 0]t and
σ = σ11

(
h⃗⊗ h⃗

)
yields:

ϵµ(2)
α11

= 3λ′
sσ11

(
α1

2
−

1
3

)
ϵµ(2)
α22

= ϵµ(2)
α33

= −
3
2
λ′
sσ11

(
α1

2
−

1
3

)
ϵµ(2)
α23

= ϵµ(2)
α13

= ϵµ(2)
α12

= 0 (2)

This error does not affect the following calculations
presented in the article.
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