Technical Article

The concept of equivalent stress and its application to

magneto-elastic behaviour

Abstract — Computational magnetics tools are increasingly re-
quired to account for the effect of stress on magnetic behaviour.
However, not all simulation software is designed for the implemen-
tation of magneto-mechanical effects. Using an equivalent stress
approach is probably the most accessible option for straightfor-
ward incorporation of magneto-elastic coupling effects into elec-
tromagnetic computations. Starting from the Von Mises equivalent
stress used in the mechanics of plasticity, this article details how a
similar concept can be applied to derive magneto-elastic equivalent
stresses. Guidelines for the practical implementation of equivalent
stress approaches are then provided, and an illustrative example is
presented to compare the various approaches proposed in the lit-
erature.

I. INTRODUCTION

The magnetic response of a ferromagnetic material to an exter-
nal stimulus is highly dependent on its mechanical state (Bo-
zorth, 1951; Chikazumi, 1997; Cullity and Graham, 2009). This
is mainly due to the fact that ferromagnetic materials are also fer-
roelastic. Stress being a second order tensor and the magnetic
field a vector, it is very challenging to describe the magneto-
elastic coupling effects for fully multiaxial configurations.

There are very few experimental setups available to explore the
effect of multiaxial stress states on the magnetic response of fer-
romagnetic materials (Kai etal.,2011,2014; Rekik et al., 2014b;
Aydin et al., 2019a; Zhang et al., 2022; Huang et al., 2024; Li
et al., 2024; Le Soudeer and Hubert, 2025). In contrast, nu-
merous experimental setups are available for characterising the
magnetic behaviour under uniaxial stress (a comprehensive list
would be too long but see for instance Singh et al. (2015); Leun-
ing et al. (2016); Perevertov (2017); Domenjoud et al. (2019);
Mailhé et al. (2020); Zhu et al. (2024)). This means that the com-
putational electromagnetics engineers have to deal with multi-
axial configurations while only having access to 1D measure-
ments.

The development of fully three-dimensional magneto-
mechanical models is a desirable and active line of research
to overcome this issue. While this research continues, another
modelling option is explored here. The question addressed in
this article is how to transform a 3D magneto-elastic configura-
tion into an equivalent 1D problem that can be addressed with
the classical 1D magneto-mechanical characterisation data?

The heritage of solid mechanics for the study of metal plasticity
can be a stimulating inspiration for the definition of equivalent
stress approaches suited to magneto-elastic problems.

In a first part, the Von Mises equivalent stress is introduced.
Various concepts of equivalent stress for magneto-elastic be-
haviour are then reviewed. An illustrative example for the prac-
tical implementation of equivalent magneto-elastic approaches
is finally detailed to compare the available approaches.

II. THE INSPIRATIONAL VON MISES STRESS FOR THE PLASTICITY
OF METALS

After an introduction of the required notations, this section de-
tails how the Von Mises stress is obtained from an energy equiv-

alence, how it is used as a plasticity criterion and why it is not
adapted for magneto-elastic problems.

A. ELASTICITY, PLASTICITY AND THE YIELD STRESS

When subjected to a stress state, materials deform. The stress
state is described by a second order tensor @. The stress tensor is
usually symmetric. Expressed in a coordinate system (z,y, z),
it can be expressed as:
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There is a coordinate system (X, Y, Z), the principal coordinate
system, in which the expression of the stress tensor is diagonal.
The stress tensor is then expressed as:

o= 0 op 0 )
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o1, o and oy are called the principal stresses, or eigenstresses.

The dual state variable for stress is the strain &, that describes the
deformation of the matter. As long as the stress does not reach
a critical intensity, the mechanical behaviour can be described
by an elastic constitutive equation. The stress o is associated
to an elastic strain £,. When the stress is released, the material
reversibly returns to its initial state. If the stress reaches a critical
intensity, the material exits the elastic regime, and the behaviour
becomes irreversible. In metals, this is due to the ignition of
plasticity mechanisms: a plastic strain g}, is superimposed to the
elastic strain (under small strain assumption: € = &¢ + €p),
and when the stress is released, this plastic strain remains as a
permanent deformation of the material under test.

In the case of linear elastic behaviour, the behaviour can be de-
scribed by Hooke’s law. For an isotropic material, the constitu-
tive equation reads:

0 =2ueq + Mr(gq), 3)

where \ and p are the Lamé coefficients (material elastic con-
stants).

A standard test to characterise the mechanical behaviour is the
tensile test. A uniaxial stress with an amplitude o, is applied to
the material. The yield stress oy is the value of applied tensile
stress o, below which the mechanical behaviour is reversible
(elastic). If the amplitude o, exceeds oy, the behaviour be-
comes irreversible. oy is a very standard material parameter
in mechanical engineering.

In many applications, it is important for engineers to verify that
operating stresses do not reach a magnitude that would generate
irreversible strains. The stress, however, is generally multiaxial,
and there is not trivial way to know if a given stress state o is
associated to the elastic regime or if it triggers plasticity.
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The objective of a plasticity criterion is precisely to define a
level of stress intensity from which plasticity mechanisms are
triggered. The Von Mises criterion is a plasticity criterion that
can be interpreted as a maximum distortion strain energy crite-
rion (Hencky, 1924; Hill, 1950).

B. DISTORSION STRAIN ENERGY

The elastic energy W, stored in a material under a stress state o
associated to an elastic strain & is given by:

1
We = 50 € 4)

Decomposing stress (resp. strain) into spherical s (resp. €°) and
deviatoric d (resp. &%) parts', and noting that the double-dot
product? of a spherical tensor with a deviatoric tensor is zero,
the elastic energy reads:

&)

Wa = 3(+d):(e5+¢&%)
1
2

The elastic energy is hence decomposed into a spherical part

S = %s: & and a deviatoric part W$ = 1d : &% The
first term describes the dilatation part of the deformation while
the second term describes the distorsion part of the deformation.

Wedl is called the distortion energy.

Using the Hooke law for an isotropic material (3), it is easy to
show that d = 2/ &9, so that the distorsion energy can be writ-
ten:

W,

€

l— —d:d (©6)
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C. CASE OF A UNIAXIAL TENSILE TEST

Lets consider a uniaxial stress state o, of magnitude o, along
the direction u: o, = o, u ® u, with ® the cross-product3. The

corresponding distorsion energy W, derived from the general
expression (6) is defined as:

2
o

Wi = Zu 7

= )

For a tensile stress state, the materials remains in the elastic

regime as long as o, remains below oy. In other words the

behaviour is reversible as long as W3 remains below a critical
value W<, :

crit*

wd — 9y (®)

D. MAXIMUM DISTORTION STRAIN ENERGY CRITERION

The Von Mises criterion assumes that, for any stress state, the
material remains in the elastic regime if the distorsion energy
W:‘l (6) does not exceed the critical value chm (8) (Hencky,
1924; Hill, 1950). The criterion can be expressed as:

1 2
Elastic regime as longas — d : d < U—Y, 9)
4 64

that can be reformulated into:

Elastic regime as long as 4/ g d:d<oy. (10)

The expression on the left-hand side is called the Von Mises
stress and noted o3 (11).

3
VM _ [ o,
Tq =1\ d:d (11)
It is a positive scalar, and it is insensitive to the stress tensor
orientation. It can be kept in its compact form (11), expressed
as a function of the components of the stress tensor (12) or as a
function of the principal stresses (13).

1
O = \/5 (011 — 092)% + (022 — 033)? + (033 — 011)% + 6(033 + 03, + 07,)] (12)
1
O’quM:\/5[(0'1—01])24-(011—0111)24-(0117—01)2} (13)

E. PRACTICAL USE OF VON MISES STRESS

The application of the Von Mises criterion is relevant to antic-
ipate the appearance of plasticity in isotropic metallic materi-
als. The practical implementation is as follows. For a given
structure under prescribed loading and boundary conditions, the
stress distribution can be determined based on elasticity assump-
tions. The results is a map of the stress o (six components ;)
at each point in the structure. At each point P, the Von Mises
stress J;f]M(P) can be calculated using (11), and compared to
the yield stress oy of the material. If a;/qM remains below oy at
any point P, no plastic deformation occurs, and the elasticity as-

IThe spherical part AS of a second order tensor A is defined as AS =
%tr (A) I, where tr(+) is the trace operator, and I the second order Identity ten-
sor. The deviatoric part A4 of A isthen A = A — AS = A — %tr (A). Ttis
easy to show that tr (A) = 0.

2The double-dot product of two second order tensors A and B is defined as
A : B = A;;B;j, using the Einstein summation convention.

3 a®b= aibj .

ICS Newsletter 4

sumptions are valid. If not, the criterion is not fulfilled, meaning
that plastic strain appears in the structure, so that the elasticity
assumptions cannot be applied. Fig.1 gives an example of the
Von Mises stress distribution resulting from the shrink-fitting
of the rotor (inner edge) and stator (outer edge) of a permanent
magnet synchronous machine (Roppert et al., 2025). The typi-
cal yield stress of Iron-Silicon steels is typically above 300 MPa
(Bozorth, 1951; Backes et al., 2024), so it can be concluded from
Fig.1 that there is no risk of plastic strain under the considered
loading conditions.

F. VON MISES STRESS: A WARNING

Because of its relevance to the plasticity of metals, and its
straightforward implementation, Von Mises stress is embedded
in most simulation tools dealing with mechanical equations, and
notably most finite element software. The concept of equivalent
stress is appealing also in the context of magnetic behaviour, and
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Fig. 1. Von Mises stress (in Pa) after prescribing a purely radial displacement at
the rotor’s inner and stator’s outer edge. Figure taken from Roppert et al. (2025).

some authors have been tempted to apply the Von Mises stress
in the context of magneto-elasticity. This temptation, however,
should be resisted.

First, the temptation is understandable: the magnetic behaviour
is highly sensitive to stress. The stress state in most magnetic
devices is multiaxial, but the available magneto-elastic models
are mostly uniaxial, and the available magneto-elastic charac-
terisation is performed under uniaxial loadings. It is therefore
understandable, when confronted to a multiaxial stress state, to
seek a - fictitious - uniaxial stress state that would be equiva-
lent to the - actual - stress state. This equivalent stress would
allow to refer to the corresponding uniaxial models or uniaxial
characterisation setups.

But using the Von Mises stress is misleading, and, in some oc-
casions, can be even worse than just ignoring the effect of stress
on the magnetic behaviour. A few illustrative examples can be
given. For instance, the Von Mises stress is always positive, be-
cause it assumes that the compressive yield stress is identical
to the tensile yield stress. In the magneto-elastic context, how-
ever, assuming that the effect of a compressive stress is identical
to that of a tensile stress contradicts experimental evidence (see
for instance (LoBue et al., 2000; Permiakov et al., 2004; Singh
etal., 2015; Karthaus et al., 2019; Ouazib et al., 2024)). Another
example is that Von Mises stress, as a purely mechanical crite-
rion, ignores the relative orientation between the applied stress
and the magnetic field. But an identical stress state can be bene-
ficial or detrimental to the magnetic response depending on the
orientation of the magnetic field (see for instance (Kai et al.,
2011; Rekik et al., 2014b; Aydin et al., 2019a,b)).

As a conclusion, the Von Mises equivalent stress is a very pow-
erful tool in the context of the plasticity of metals, and has long
proven its utility. However, it was never designed to account for
magneto-mechanical behaviour. Dedicated equivalent stress ap-
proaches must therefore be developed for this specific context.

III. EQUIVALENT STRESSES FOR MAGNETIC MATERIALS

Several research groups have worked to define a concept of
equivalent stress suited to the magneto-elastic behaviour. The
following is a review of different attempts.

A. THE PIONEERS

The first approaches considered a particular 2D-case with o =
0 and the magnetic field H aligned along the direction of the
principal stress o (see illustration in Fig 2).

Fig. 2. Canonical 2D magneto-mechanical loading configuration considered in
the first equivalent stress approaches.

Schneider and Richardson (1982) proposed the following ex-
pression for the equivalent stress oesclf:
O =01 —0p (14)

It is remarkable that for an equibiaxial stress, 0§§ iS zero, as-

suming that such a stress state has no effect on the magnetic
behaviour.

Kashiwaya (1991) considered a similar 2D-case but defined a
different equivalent stress aéf]:
Ué(q =k (or —max(or,0q)) (15)

where £ is a constant that was chosen to adjust experimental
measurements. It can be noted that aé(q is always negative or
null. If o is the highest principal stress (magnetic field applied
along the direction of the maximum principal stress), G'eKq is zero,
so that a tensile stress or an equi-biaxial tension or compression
are supposed to have no effect on the magnetic behaviour. It can
also be noted that in the case of a uniaxial tension o, along the
direction of the magnetic field, a; does not reduce to oy,.

Still for the same 2D-configuration, Sablik et al. (1994) defined

the following equivalent stress aesq:

1

5(201—05) for o7 < 0
N (16)
1
g(d[—Qdﬂ) for o7 >0

In contrast to the first two proposals, equi-bitraction and equi-
bicompression do not lead to identical values of aesq. But the
equivalent stress function is discontinuous in the vicinity of
or = 0, and in the case of a uniaxial tension o, along the di-

rection of the magnetic field, qu does not reduce to oy,.

Pearson et al. (2000) also proposed an equivalent stress for a
biaxial mechanical loading. It takes the form of a polynomial
interpolation identified from biaxial measurements. Since the
identification requires complex measurements, and is sample
dependent, the practical implementation of this approach is not
straightforward.

These first seminal approaches were key in highlighting the need
for equivalent stress definitions adapted to the study of magneto-
mechanical behaviour. However, they suffer strong limita-
tions (Daniel and Hubert, 2010). In particular, these equiva-
lent stresses are not fully multiaxial: they are restricted to 2D-
configurations, but even more, they impose that the magnetic
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field is parallel to a principal stress direction. Such a con-
straint is usually not fulfilled in practical applications. This
makes the range of application of these approaches very narrow.
These limitations have motivated the quest for more general ap-
proaches.

B. PRINCIPAL STRESS DECOMPOSITION (PSD) METHOD

The principal stress decomposition (PSD) method initially pro-
posed by Nakano et al. (2009) is not strictly-speaking an equiv-
alent stress approach, but it has the same goal of being able to
describe 3D configurations from 1D information only. The ap-
proach was proposed for 2D magneto-mechanical loadings, but
it can be generalised to 3D without significant obstacle.

The principle is as follows. The stress is expressed in the prin-
cipal coordinate system (X,Y). In that coordinate system the
magnetic field H is defined by its components Hy and Hy. The
assumption of the PSD method is that the magnetic induction B
can be decomposed into its two components B x and By, where
Bx is only influenced by o; and By is only influenced by o:

Bx =Bx(Hx,o0) and By = By (Hy, o) (17)

A strong limitation with the PSD method is that the magnetic
response in one direction is totally independent of the stress in
the perpendicular direction. This contradicts experimental ob-
servation showing that a uniaxial tension stress in a given di-
rection has an effect on the permeability in the perpendicular
direction, this effect ressembling that of a compressive stress
in that perpendicular direction. Moreover, it is clear that this
approach will predict a strong effect of a hydrostatic stress* on
the magnetic response, again in contradiction with experimen-
tal evidence. These limitations could probably be overcome, at
least partially, by using the deviatoric tensor d instead of the full
stress tensor @. It seems this path has not been explored so far.
We will call this approach the principal deviatoric stress decom-
position (PDSD) method. It simply consists in replacing (17) by
(18):

3 3
BX :BX(HXaidI) andBy ZBy(Hy,idﬂ) (18)

The factor 3/2 has been introduced to enforce that the approach
reduces to the 1D behaviour in the case of a uniaxial stress load-
ing applied parallel to the magnetic field.

C. EQUIVALENT STRESS BASED ON AN EQUIVALENCE IN
MAGNETO-ELASTIC ENERGY

Following the inspirational work of Von Mises, and its energy
interpretation, equivalence in energy can be derived to design
equivalent stress definitions for magneto-elastic behaviour.

C.1 Deviatoric magneto-elastic equivalent stress

A first approach (Daniel and Hubert, 2009) relies on the follow-
ing definition of the magneto-elastic energy W, (Hubert and
Schifer, 1998):

Woy=—0:€, (19)

where o is the stress applied to the material, and £, the magne-
tostriction strain tensor. For an isotropic material, the magne-
tostriction strain tensor can be defined as:

h

4 A hydrostatic @" stress is a purely spherical tensor in the form o™ = o, I.
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3 1
e, = A([H]) <2h®h— 2]I> (20)
where A(|[H||) is the longitudinal amplitude of the magnetostric-
tion strain, assumed to depend only on the magnitude of the mag-
netic field H, h is the direction (unit vector) of the magnetic field
H, and I is the second-order identity tensor.

Decomposing the stress o into its spherical s and deviatoric d
parts, the magneto-elastic energy can be re-written:

3 1
W, ==X(H|) (s +d): <2h®h— 2]1) (21)
h being a unit vector, s : (h ® h) = $tr(s). Moreover, s : I =
tr(s) and d : I = 0. The magneto-elastic energy W, can hence
be written:

W = —5 A(HI) & (heom) e}

d : (h ® h) is the projection of dl along the direction h, so that
the magneto-elastic energy can finally be written:

Wop = —5 AH]) 'h-d b (23)

In the case of a uniaxial stress state o, applied parallel to the
magnetic field (o, = oy, u ® u with u = h), and starting from

(21), the magneto-elastic W7, energy reads:

3 1
W5, = —ou A(|H[) (h®h): <2h ®h— 2]I) (24)
Noting that, h being a unit vector, (h®h) : (h®@h) = 1 and
(h®h) : I =1, it comes:

Wa, = —ou A([HI]) (25)

Defining a magneto-elastic energy criterion consists in assuming
that two stress states are equivalent, in terms of magneto-elastic
behaviour, if they share the same magneto-elastic energy Wo,,.
When considering a general stress state, with its magneto-elastic
energy Wy, defined by (23), we can look for the uniaxial stress
state o, applied in the direction h of the magnetic field, that leads
to the same magneto-elastic energy. This comes down to equal-
ising (23) and (25). This is the approach followed in Daniel and
Hubert (2009) to define the equivalent stress o' (26) based on
an equivalence in magneto-elastic energy:

3
DH _ 2¢
Oeq =3 h-d-h (26)
This expression is fully multiaxial. Any stress tensor o can be
considered in combination with any magnetic field direction h.

og' can be positive or negative, and the implementation is
straightforward. However, it can be noticed that the approach is
restricted to isotropic materials. It can also be noticed that due
to the projection along the magnetic field direction h, the shear
stress terms along the field direction do not have any effect on
the definition of UEqH, meaning that it is assumed that they have
no effect on the magneto-elastic behaviour.

C.2 Extension to orthotropic materials

Many magnetic materials are anisotropic, and it impacts strongly
their magneto-elastic response. Hubert and Daniel (2011) at-
tempted to define an equivalent stress based on an equivalence



in magneto-elastic energy for orthotropic material. They suc-
ceeded in obtaining an analytical definition, but the implemen-
tation revealed to be complex, because it required to identify the
principal coordinate system for magnetostriction strain which, in
the case of anisotropic materials, has no reason to be the same
as the stress principal coordinate system. Unless the magnetic
field is applied along one orthotropy axis of the material, this
approach is not easily practicable.

C.3 Shear-dependent equivalent stress

Rasilo et al. (2019) developed a similar energy equivalence, but
based on a macroscopic definition for the magneto-elastic po-
tential (Fonteyn et al., 2010; Aydin et al., 2017). The following
equivalent stress is obtained:

3 \2
r— th-(r][——dl) -h, ifa?”ﬁr
2 q
Ra

okt = : @7)
3 .
r+ \/‘h- (r]I — §d1> -h, otherwise
2
= 2om 1

with t; and t; two orthogonal directions perpendicular to the
magnetic field direction h (unit vectors). K is a material param-
eter. It was shown that K can be expressed as a function of more
standard material parameters:

:9 X0 )\m
2 po M2

(29)

Xo is the initial susceptibility measured on an anhysteretic curve
under no applied stress, A is the maximum longitudinal mag-
netostriction strain under no applied stress, jo is the vacuum
magnetic permeability and M is the saturation magnetisation
of the material. For isotropic polycrystals, the maximum mag-
netostriction strain A, can analytically be defined from the sin-
gle crystal properties (Daniel et al., 2008). In the simple case
where stress is considered uniform within the polycrystal, the
expression of A\, reduces to:

2 .. ~ .
Am = = Moo for positive magneto-crystalline

5 anisotropy materials
(30)
3 for negative magneto-crystalline
Am = £ A : .
5 anisotropy materials

One issue with the definition of o (28) is that t; and t; are
not uniquely defined from the knowledge of the magnetic field
direction h. Hence, the value of o{{” is not uniquely defined for
a given magneto-elastic loading. In the case of peculiar geome-
tries, such as electrical sheets, Hubert and Daniel (2011) suggest
that t5 can be taken as the direction normal to the sheet plane.
This makes the definition of o?qH unique, but is only applicable

as long as the magnetic field H remains in-plane.

A similar approach was followed in Daniel (2013): from an an-
alytical expression M(H,o) for the magnetisation, and applying

>Note that for the consistency of the paper, a slightly different notation is
adopted here: the parameter k£ used by Hubert and Daniel (2011) is equal to
2K / 3.

In contrast to the deviatoric equivalent stress UB]H, the expres-
sion (27) introduces a material parameter r, defined as the uni-
axial stress amplitude providing the maximum permeability for
the material, the permeability being measured in the direction
parallel to the applied stress. A great advantage of this approach
over the other equivalent stresses is that it naturally introduces a
dependence to the shear stress along the magnetic field direction
h. As noted by Rasilo et al. (2019), when there is no such shear

stress component, af}qa reduces to ang.

D. OTHER EQUIVALENCES
D.1 Equivalence in magnetic susceptibility

As an alternative to the equivalence in magneto-elastic energy,
Hubert and Daniel (2011) developed an equivalent stress &’
based on an equivalence in magnetic susceptibility. From a sim-
plified description of the magnetisation process based on a mul-

tiscale model, the following expression was obtained®:

_ 1 In % (exp (K bty - dl-tl) -+ exp (K bty - dl~t2))} (28)

an equivalence in magnetisation, an equivalent stress a?qwas ob-
tained:

1 2 exp(Ko//)
D _ — 31
Teq K n (exp(KUM) + exp(Koy2) (D)

K is the same parameter as defined by (29). o, is the projec-
tion of the stress tensor o along the magnetic field direction
(o = th- o - h). 011 and 015 are the projections of the stress
tensor o along two perpendicular directions orthogonal to the
magnetic field direction h. Introducing in (31) the decomposi-
tion of the stress o into its deviatoric (d) and spherical (s) parts,
the spherical part can be factorised. The operation reveals that
the equivalent stress aEq (31) is strictly identical to the equiva-
lent stress ogy (28), which was unnoticed so far:

D HD
Oeq = Ocq (32)
It is then obvious that the equivalent stress 02] suffers the same
limitations as the equivalent stress off.

As already mentioned by Yamazaki et al. (2018), it can also be
noticed that:

. HD _ _DH
Il(lino Oeq = Ocq (33)

D.2 Equivalence in coercive field

Rekik et al. (2014a) developed an equivalence in coercive field:
two stress states are considered equivalent if they are associ-
ated to the same coercive field for the material. Although it was
unnoticed in the article, it appears that the approach leads ex-

actly to the same definition for the equivalent stress agqe as in
the equivalence in magnetisation (28) and (31):
oRe = gD = 5ID (34)

€q €q €q
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D.3 Equivalence in magnetostriction

Using an analytical expression for the magnetostriction strain
(Daniel, 2018), Le Soudeer and Hubert (2025) proposed an
equivalent stress aeLqS based on an equivalence in longitudinal
magnetostriction strain. They noted that the result is identical to
(28):

LS _ Re _ D _ _HD
ch - ch - ch - ch (35)

D.4 Equivalent strain approach

Some numerical formulations prefer the use of the strain ten-
sor € as an alternative for the stress tensor o as the input state
variable in the magneto-elastic constitutive equations. Simi-
lar equivalence approaches can be adopted. An equivalence in
macroscopic energy was followed in Daniel (2017) to define the
following equivalent strain e.q for magneto-elastic behaviour:

3 1
Cq =5/~ 5 tr(e) (36)
with €, the projection of the strain tensor € along the magnetic
field direction h (¢ = "h- & - h). Similarly to deviatoric equiv-
alent stress approach (26), this definition does not require any
material parameter. It can be put in a form very similar to (26):

3
Eeq = éth'gd-h (37)

where €9 is the deviatoric part of the strain tensor €.

IV. PRACTICAL IMPLEMENTATION OF AN EQUIVALENT STRESS
APPROACH

Despite its simplicity of implementation, there are only few ex-
amples of implementation of an equivalent stress approach in
the literature. Krebs and Daniel (2012) used it for the design of
a field weakening method based on giant magnetostrictive ma-
terials for a permanent-magnet synchronous motor. It was also
implemented for the determination of the effect of stress on per-
manent magnet synchronous motor performance (Yamazaki and
Kato, 2014; Yamazaki and Aoki, 2016; Yamazaki et al., 2018,
2020). Helbling et al. (2022) used it for the interpretation of the
effect of perpendicular compaction on the behaviour of elec-
trical steel sheets for motor applications. Another application
was proposed by Gueye et al. (2016) to elucidate the ferromag-
netic resonance in thin films submitted to multiaxial stress state.
Shimizu et al. (2023) implemented the PSD method in the case
of a non-oriented Iron-Silicon sheet subjected to uniaxial com-
pression with in-plane magnetic field.

The objective of this section is to illustrate the practical imple-
mentation of an equivalent stress approach on an example. the
objective is to predict the influence of a multiaxial stress state o
on a property of interest p(o, H) knowing only this property p
under uniaxial loading configurations.

A. GENERAL METHODOLOGY

The first step consists in identifying the property p of the stud-
ied material under 1D magnetoelastic configurations (uniaxial
stress o, = 0, u ® u and magnetic field H = H h with u = h).
These 1D references results will generally be obtained from ex-
perimental characterisation. There are many examples in the lit-
erature of experimental measurements of magnetic permeability
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or magnetic losses under uniaxial stress (see for instance LoBue
etal. (2000); Singh et al. (2016); Karthaus et al. (2019); Domen-
joud and Daniel (2023); Ouazib et al. (2024) among others).
These are the only data required, in addition to the material pa-
rameters K and r for the HD (28) and Ra (27) approaches, re-
spectively.

Let assume that the magnetoelastic problem of interest is the
study of an electrical machine as illustrated in Fig.1. The prop-
erty of interest p could then be the magnetic permeability. The
approach is then as follows. A first distribution of stress o (P)
and magnetic field H(P) is defined in the structure from an un-
coupled simulation. From this distribution, the equivalent stress
0eq(P) can be calculated at each point of the structure. The
property p(o, H) is then evaluated, at each point of the struc-
ture, as p(o, H) = p(oeq, H), where p(oeq, H) is interpolated
from the reference 1D measurements. The property p can then
be updated in the simulation and the operation is repeated until
convergence.

B. ILLUSTRATION ON A FEW SIMPLE CONFIGURATIONS

The objective of this subsection is to illustrate the equivalent
stress approach on a few typical configurations. For these il-
lustrative examples, the considered property p is the hysteresis
losses of a magnetic material. For the sake of simplicity, we
will assume that we are only interested in the value of hysteresis
losses at a frequency f = 10 Hz for a peak induction By.x = 1
T. Of course, in a real situation, a set of experimental measure-
ments at various frequencies and various peak inductions would
be required. The reference values of p are taken from the exper-
imental measurements of Ouazib et al. (2024), performed on a
low-carbon steel under uniaxial stress. They are shown in Fig.3.
The corresponding material parameters, required for the calcu-
lation of o and o are known on this material (da Silva etal.,
2022). They are given in Table I.
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Fig. 3. Uniaxial material data to perform the equivalent stress approach: ex-
perimental measurement of hysteresis losses (sinusoidal induction at f = 1 Hz
with peak induction value Bmax = 1 T) on a low carbon steel under uniaxial
stress (Ouazib et al., 2024). The inset illustrates the considered magneto-elastic
configuration.

From these parameters, the value of K (29) can be determined
as K = 551078 Pa~ 1.

From the 1D measurements of Fig.3 only, the property p under
multiaxial loadings can be predicted following the different ap-
proaches presented in the previous section.



TABLE I. MATERIAL PROPERTIES REQUIRED FOR HD AND RA APPROACHES:
SATURATION MAGNETISATION M, MAXIMUM LONGITUDINAL MAGNETOSTRICTION
STRAIN Ay, INITIAL ANHYSTERETIC SUSCEPTIBILITY UNDER NO APPLIED STRESS X0

AND UNIAXIAL STRESS AMPLITUDE FOR MAXIMUM MAGNETIC PERMEABILITY 7

Parameter M Am Xo r
Value 1.4106 6 5000 | 80
Unit Am~! 1076 - MPa
Model HD Ra
Source da Silva et al. (2022)

B.1 The canonical 2D-case

The first multiaxial configuration, studied in the early works
of Kashiwaya (1991); Schneider and Richardson (1982); Sab-
lik et al. (1994); Pearson et al. (2000) is the case of a biaxial
stress with the magnetic field applied along one principal stress
direction (Fig.2). The corresponding stress tensor can be written
aso =o0;Xx®Xx+ogy®yand H= Hx.

In that case, the expressions of the various equivalent stress can
be simplified. og," reduces to (38), o is equal to o, since
there is no y shear term, oy reduces to (39).

1
oEq“:o,—§aH (38)

1 2
HD _ —mn|l— 39
I n[l‘i‘eXP(KUH)] &9

The property of interest p(or) is then defined as p(oy = 0¢q),
which can be extracted from the data on Fig.3. If the PSD method
is applied, p(o) is defined as p(o, = o), and finally, if the PDSD
method is applied, p(o) is defined as p(oy, = 3d;).

Fig.4, Fig.5 and Fig.6 show the predicted property p under this
biaxial loading for the DH, HD and PSD approaches, respectively.

DH=Ra=PDSD

100 1.8

50 1.6

0 14

-50 1.2
-100 1

-100  -50 0 50 100
o; (MPa)

arr (MPa)

Fig. 4. Predicted hysteresis losses based on the data from Fig.3, and the use of the
equivalent stress ang for a biaxial stress with the magnetic field aligned along
the first principal stress direction (illustration on Fig.2). In that configuration,
DH, Ra and PDSD methods are equivalent.

The isovalue of the hysteresis losses for the DH approach are par-
allel lines, ressembling the experimental measurements shown
in Aydin et al. (2019b,a). The HD approach shows curved lines,
where the effect of a compressive stress in the direction perpen-
dicular to the magnetic field has no effect on the response of the
material. In contrast, a tensile stress in the direction perpendicu-
lar to the magnetic field has a significant effect on the response
of the material. Such evolutions where observed for the mag-
netic susceptibility under biaxial stress (Le Soudeer and Hubert,

-50

-100
-100 -

HD

100 7 1.8

50 1.6
=
A,

S0 14
S
S

12

1
50 0 50 100

or (MPa)

Fig. 5. Predicted hysteresis losses based on the data from Fig.3, and the use of the
equivalent stress ang for a biaxial stress with the magnetic field aligned along
the first principal stress direction (illustration on Fig.2). For the implementation

of the approach, to was taken as the direction z.

PSD
1.8
1.6
14
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1
50 0 50 100
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o

-50

-100 =
-100 -

Fig. 6. Predicted hysteresis losses based on the data from Fig.3, and the use
of the principal stress decomposition (PSD) method for a biaxial stress with the
magnetic field aligned along the first principal stress direction (illustration on
Fig.2).

2025). The PSD approach shows absolutely no sensitivity to the
second principal stress, since the field is aligned with the first
principal stress. This results in vertical isovalues in Fig.6.

B.2 A uniaxial-stress multiaxial configuration

Another multiaxial configuration is the case of a uniaxial stress
o, = 0y, X ® X combined with a magnetic field H = H h with
h = “[cosf sinf 0]). The expressions of the various equiva-
lent stress can be simplified. og)', o& and of reduce to (40),
(41) and (42), respectively. In the case of the HD approach, the
choice of t; and t; is not unique, leading to different expressions

for U?qD and hence for p. In (42), t; was chosen as z.

3 1
oo = 500 <cos2 60— §> (40)

2
r\/r2+rau(1300529)+%(1+300529)’

if o2 <y
q

Ra __

eq

2
r+\/1"2 + 7oy (1 —3cos?0) + 2—“(14—300829);

otherwise

(41)
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1
HD 2
=0y cos“f + — In
! 1+ exp (Koysin® 0)

€q K

g

] (42)

The property of interest p(o) is then defined as p(oy = 0¢q),
interpolated from Fig.3. If the PSD method is applied, p(o) is
defined as p(oy, = o7cosf + oy sinf), and finally, the PDSD
method is applied, p(o) is defined as p(o, = d; cos 0+ dj sin).
The predicted property p according to the various equivalent
stress approaches, for a tensile stress o, = 80 MPa, is shown
in Fig.7

90
120 m 7 60

DH~Ra

PSD=PDSD

150 30

180 0

0 0.5 1 1.5

Fig. 7. Predicted hysteresis losses based on the data from Fig.3, and the use of
equivalent stress methods for a uniaxial tensile stress oy, = 80 MPa with the
magnetic field oriented at an angle € from the stress direction. The results are
plotted in polar coordinates. The inset illustrates the considered magneto-elastic
configuration.

PSD and PDSD methods are equivalent for this configuration.
They show no sensitivity to the angle of application of the elec-
tric field, resulting in a circle on Fig.7. Such an insensitivity
is unexpected under such loading conditions (see for instance
Kai et al. (2011)). DH and Ra approaches, while their expres-
sions differ, provide very similar predictions in that case. The
HD method does not provide a unique definition of USP, depend-
ing on the choice for the directions t; and t; in (28). The range
of predictions provided by the HD approach are shown as a grey
area, obtained when the two perpendicular unit vectors cover all
the possible definitions for t; and t. Choosing t; as z as in (42)
leads to one extremum prediction, shown in darker grey in Fig.7.
It is remarkable that DH provides the other extremum of the HD
prediction.

B.3 Other simple configurations

Other configurations can be interesting to evaluate the features
of the different equivalent stress approaches.

Hydrostatic stress. Hydrostatic stress is a purely spherical
stress defined as o = o, . It is remarkable that the three equiv-
alent stress approaches presented in this paper, together with the
PDSD are insensitive to hydrostatic stress:

U%H(JOH) = URa(UO]I) = gD

eq eq (ooI) =0 (43)

This is expected considering that the magnetostriction is iso-
choric, and it is in agreement with experimental observations,
as long as volume magnetostriction is not involved (Bozorth,
1951). In contrast, PSD implies a significant evolution of p with
hydrostatic pressure, which constitutes a strong warning to its
practical use (see Fig.8).
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Fig. 8. Predicted hysteresis losses based on the data from Fig.3, and the use
of equivalent stress methods for a hydrostatic stress. The inset illustrates the
considered magneto-elastic configuration. All approaches predict no effect of
hydrostatic stress except the PSD method. The inset illustrates the considered
magneto-elastic configuration.

Equi-biaxial configuration. The equibiaxial stress is defined
as o = 0,(Xx®x+y®y) and the magnetic field is taken parallel
to x. This case is a particular case of the canonical-2D case,
along the diagonal o = o7. The predicted response is shown in
Fig.9. As already mentioned in Fig.4, DH, Ra and PDSD methods
are equivalent in that case. The range of predictions for the HD
approach is shown as a grey area. It is again observed that the
choice t, = z provides one extremum of the solutions, while DH
provides the other extremum of the HD prediction.

1.8 . :
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Fig. 9. Predicted hysteresis losses based on the data from Fig.3, and the use
of equivalent stress methods for an equibiaxial stress with the magnetic field
along a principal stress direction. The grey area illustrates the range of possible
results for the HD approach due to the non-uniqueness for the definition of the
perpendicular directions. The inset illustrates the considered magneto-elastic
configuration.

Pure shear loading. Two pure shear loading conditions are
considered. In the first one (shear I), the shear stress is applied
at 45° with respect to the magnetic field direction h: 0 = 0,(x®
X —y ®y). This is another particular case of the canonical-2D
case, along the second diagonal 0y = —o . The corresponding
predicted response is shown in Fig.10. DH, Ra and PDSD methods
are again equivalent in that case. The range of predictions for
the HD approach is shown as a grey area. It is again observed
that the choice to = z provides one extremum of the solutions,
while DH provides the other extremum of the HD prediction.
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Fig. 10. Predicted hysteresis losses based on the data from Fig.3, and the use
of equivalent stress methods for a pure shear stress with the magnetic field at
45° from the shear component. The grey area illustrates the range of possible
results for the HD approach due to the non-uniqueness for the definition of the
perpendicular directions. The inset illustrates the considered magneto-elastic
configuration.

In a second configuration (shear II), the shear stress is applied
along the magnetic field direction h: 0 = o,(X ® y + y ® X).
The corresponding predicted response is shown in Fig.11.
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Fig. 11. Predicted hysteresis losses based on the data from Fig.3, and the use of
equivalent stress methods for a pure shear stress with the magnetic field along
the shear component. The Ra approach is the only approach able to capture an
effect of shear stress in that configuration. The inset illustrates the considered
magneto-elastic configuration.

All approaches exhibit no sensitivity to this shear II configura-
tion except the Ra approach. The trend predicted by the Ra ap-
proach ressembles the experimental observations in Aydin et al.
(2019b).

V. SUMMARY AND CONCLUSION

This article reviewed the available approaches to define equiva-
lent stress approach for the magneto-elastic behaviour of ferro-
magnetic materials. While these approaches rely on strong ap-
proximations, they are powerful tools to evaluate the response of
materials to multiaxial loadings, based on limited knowledge ob-
tained from uniaxial experiments only. It was shown that some
of the equivalent stresses proposed in the literature turn out to
be identical.

The main features of the different approaches are summarised

in Table I1. The historical approaches SR, K, SR have been semi-
nal in the development of the concept of magneto-elastic equiv-
alent stress approaches, but they are limited to very specific
two-dimensional configurations. They cannot therefore be re-
garded as general multiaxial equivalent stress criteria. The PSD
approach suffers from the major drawback of being sensitive
to hydrostatic pressure, which can lead to significant prediction
errors. Four main approaches emerge: the deviatoric equiva-
lent stress (DH), the extended deviatoric equivalent stress (Ra),
the magnetisation deviatoric equivalent stress HD, and the princi-
pal deviatoric stress decomposition (PDSD) method. All four are
fully multiaxial in nature. An important feature is that the cor-
responding equivalent stresses reduce consistently to the input
reference data in the case of a uniaxial stress applied along the
field direction, which is the reference configuration. The HD ap-
proach is not uniquely defined for a given magneto-mechanical
configuration, which requires special care in its implementation.
Finally, the Ra approach is the only one to date able to consider
the effects of a shear stress component along the magnetic field
direction.

So far, these approaches do not incorporate the anisotropy of
material behaviour. In analogy with the development of the
anisotropic Hill criterion following the isotropic Von Mises
criterion, there is undoubtedly room for the formulation of
anisotropic magneto-elastic equivalent stresses. Of course, mul-
tiaxial characterisation setups are instrumental for validating
these methods and differentiating their specific features. The
development of such setups under complex loading conditions
should therefore be strongly encouraged. Finally, it should be
stressed that equivalent stress approaches provide efficient tools
for a fast evaluation of multiaxial effects, but they cannot replace
fully coupled multiaxial constitutive models.
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