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Abstract. Magnetostriction is the magnetisation-induced strain in ferromagnetic materials. It highly depends
on mechanical stress. Stress state in electromagnetic devices is usually multiaxial and its effect on
magnetostrictive properties is not easily predicted. In this paper, an original three-parameter analytical model
for the stress-dependent magnetostriction strain of ferromagnetic materials is proposed. It is based on a
simplified energetic description of magneto-elastic behaviour. It follows a similar method previously adopted for
the description of the effect of stress on themagnetic permeability of magnetic materials. It is applied for the first
time to the magnetostriction behaviour and results in a simple formula to express the effect of multiaxial
magneto-mechanical loadings on the magnetostriction strain. The approach also naturally includes the
description of the so-called DE effect. The analytical formula is derived in the paper. It shows very satisfying
agreement with experimental results on iron–cobalt alloy and pure iron specimen.
1 Introduction

Magnetic and mechanical behaviours are strongly coupled
[1]. Magnetisation is very sensitive to the application of
stress, leading to significant effects on the performance of
electromagnetic devices [2–4]. Conversely, the magnet-
isation process is associated with a mechanical deformation
called magnetostriction. Magnetostriction can be used for
actuation purposes, for instance using giant magnetostric-
tive materials [5–7]. It is also one of the origins of the noise
emitted by electromagnetic devices such as transformers
[8–10]. Magnetostriction itself is known to be sensitive to
stress [11–14]. Although very significant, this effect of
stress on the magnetostriction strain is rarely taken into
account in the modelling of electromagnetic devices or
limited to uniaxial configurations where the stress is
uniaxial and applied in the direction parallel to the applied
magnetic field [15–17]. However, stress state in electro-
magnetic devices is usually multiaxial, making the 1D
approaches irrelevant. Recently, 3D magneto-mechanical
models for the prediction of the magnetostriction strain
have been proposed. Some of them are based on the
definition of the magneto-elastic free energy of the material
[18–20]. These approaches can handle full 3D configura-
tions, but the number of parameters required for the
modelling can be high and their identification can be
tedious. Some others are based on a multiscale description
of magneto-elastic couplings [21–27]. These models pro-
vides a very useful insight into magneto-elastic coupling
effects, but they are usually too complex to be directly
implemented into numerical analysis tools. In order to
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overcome this issue, simplified approaches have been
derived from these full multiscale approaches [28]. These
simplifications lead to a loss of information, notably
regarding internal heterogeneity effects, but can be
implemented into structural analysis tools for electromag-
netic devices [29–31]. In this paper, the simplification
procedures are extended further so as to obtain a fully
analytical model for the magnetostriction strain as a
function of applied magnetic field and stress. It follows a
similar method previously adopted for the description of
the effect of stress on the magnetic permeability of
magnetic materials [32]. In Section 2, the simplified 3D
magneto-elastic model [28] is recalled. It is shown in
Section 3 how further simplifications can provide a fully
analytical definition for the stress-dependent magneto-
striction strain. The magnetostriction strain under partic-
ular loadings is then detailed (Sect. 4) and a parameter
identification method is proposed (Sect. 5). Section 6 is
finally dedicated to an illustration of the model prediction
and to the comparison to experimental results.
2 Simplified magneto-elastic model

A magneto-elastic constitutive law can be derived from the
description of a magnetic material as a set of magnetic
domains with known magnetisation (Ms) and random
orientation [28]. This approach, detailed in reference [28]
is recalled hereafter. The local free energy (Eq. (1)) of a
magnetic domain k is expressed as the sum of three
contributions:

Wk ¼Wmag
k þW el

k þWan
k : ð1Þ
1

mailto:laurent.daniel@centralesupelec.fr
https://www.edpsciences.org
https://doi.org/10.1051/epjap/2018180079
https://www.epjap.org


2 L. Daniel: Eur. Phys. J. Appl. Phys. 83, 30904 (2018)
The Zeeman energy Wmag
k (Eq. (2)) introduces the

effect of the appliedmagnetic field on the equilibrium state.
m0 is the vacuum permeability. Hk and Mk are the
magnetic field and magnetisation in the magnetic domain.

Wmag
k ¼ �m0Hk⋅Mk: ð2Þ

The elastic energyW el
k (Eq. (3)) introduces the effect of

stress on the magnetic equilibrium. s is the applied stress
and e

m
k is the magnetostriction strain in the magnetic

domain. Like the other energy terms, this energy is defined
except for a constant. The derivation of equation (3) from
the classical definition of the elastic energy is detailed in
reference [24].

Wel
k ¼�s : emk : ð3Þ

Macroscopic anisotropy can be described through an
anisotropy energy term Wan

k added to the free energy.
Equation (4) gives this additional term for a uniaxial
anisotropy along direction v, with K the anisotropy
constant. If we assume macroscopic isotropy, this term
vanishes:

Wan
k ¼Kðuk⋅vÞ2: ð4Þ

Such an approach, very close to Armstrong model [22],
was proposed in reference [29] in the 2D case. For a three-
dimensional configuration and considering isotropic and
isochoric magnetostriction [28], the following definitions
for the local magnetisationMk andmagnetostriction strain
emk are used:

Mk¼Msuk; ð5Þ

emk¼ls
3

2
uk ⊗uk � 1

2
I

� �
: ð6Þ

Ms is the saturation magnetisation of the material, uk
is the orientation of the magnetisation in the domain k, ls
is the saturation magnetostriction constant and I the
second-order identity tensor. Note that equation (6)
corresponds to isochoric magnetostriction (trðemk Þ ¼ 0), so
that volume magnetostriction, occurring for high magnetic
field levels, is neglected.

The magneto-elastic behaviour is obtained by defining
the volume fraction fk of a domain with orientation uk
through the use of a Boltzmann probability function [21]:

fk¼
expð � AsWkÞR
kexpð � AsWkÞ ; ð7Þ

where As is a material parameter linked to the initial
anhysteretic susceptibility x0 [24]:

As¼ 3x0

m0M
2
s

: ð8Þ

Once the probability fk is defined, the macroscopic
magnetisation M and magnetostriction em are obtained,
No-p
thanks to an averaging operation over all possible
directions:

M¼ ⟨Mk⟩¼
Z
k

fkMk; ð9Þ

em ¼ ⟨emk ⟩¼
Z
k

fke
m
k : ð10Þ

This integration step can be performed numerically
using a discretisation of possible orientations uk [25].

Although simplified compared to the full multiscale
model [25], this approach is not analytical. Integration
operations are required in equations (7), (9) and (10). It can
be made analytical by considering a further simplified
configuration with a limited number of domains. This is
expected to aggravate the limitations of the model
proposed in reference [28], particularly in the case of
complex anisotropies or high level of heterogeneity.
However, such a strategy was already successfully
applied in reference [33] for the definition of an equivalent
stress for magnetic behaviour, in reference [34] to describe
the effect of plasticity on the magnetic behaviour, or in
reference [32] to derive an analytical expression for
the stress-dependent magnetic permeability of ferromag-
netic materials. It is developed here to derive an original
analytical expression for the stress-dependent magneto-
striction strain.
3 Stress-dependent magnetostriction strain

We consider a homogeneous isotropic magnetic material
subjected to a magnetic fieldH in the direction x (H=Hx)
in an orthonormal coordinate system (O,x,y,z). This
material is simultaneously subjected to a multiaxial stress
state s given by equation (11):

s¼
sxx sxy sxz

sxy syy syz

sxz syz szz

0
@

1
A

xyz

: ð11Þ

Any relative orientation between the applied magnetic
field and the principal stress can be described. Following
the approach proposed in reference [32], the material
equilibrium state can be defined using a simplified energy
description. The material is assumed to be divided into six
domains noted k (k={1, 2, 3, 4, 5, 6}) with magnetisation
oriented along uk (uk={ x, �x, y, �y, z, �z }). Each
domain k is characterised by its free energy (Eq. (12))
obtained after simplification of equation (1). For strongly
anisotropic media, an anisotropy term (e.g. Eq. (4)) should
be kept in the free energy (Eq. (12)), to the price of a
complexification of the analytical expressions obtained.

Wk¼� moHMsx⋅uk � s:emk : ð12Þ
Under these assumptions, the free energy for each

domain k can be explicitly written. The volume fraction fk of
each domain (Eq. (7)) is then estimated from equation (13)
2
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using a discrete summation. The relative weight for a
givenorientationk is directly related to the relativeenergyof
this orientation compared to the other orientations.

fk¼
expð � AsWkÞX6

k¼1

expð � AsWkÞ
; ð13Þ

which leads to

f1¼CAxexp ðkHÞ
f2¼CAxexp ð � kHÞ
f3¼f4¼CAy

f5¼f6¼CAz

8>>><
>>>:

ð14Þ

using the following notations:

C¼
exp �a

3
trðsÞ

� �
X6
k¼1

exp ð �AsWkÞ
; ð15Þ

a¼ 3

2
Asls; ð16Þ

k¼moAsMs; ð17Þ

Ai ¼ expðasiiÞ; i¼ {x;y;z}: ð18Þ
As shown in reference [32], the material magnetisation

M is obtained, thanks to the discrete summation (Eq.(19)),
which leads to the analytical definition (Eq. (20)) for the
magnetisation:

M¼
X6
k¼1

fkMsuk; ð19Þ

M¼ Ax sinh ðkHÞ
Axcosh ðkHÞ þ Ay þ Az

Msx: ð20Þ

This expression introduces the saturationmagnetisation
Ms of the material and two additional constants a and k.
Due to the form of the magnetostriction tensor (Eq. (6)),
only the components sxx, syy and szz appear in the analytical
expression of the magnetisation (Eq. (20)) � see the
expression of the magneto-elastic energy in equation (3).

Similarly, the magnetostriction strain is defined by the
discrete summation (Eq. (21)):

em¼
X6
k¼1

fke
m
k : ð21Þ

It is easily shown that it can be written in the form

em¼l

1 0 0

0 �1=2 0

0 0 �1=2

0
@

1
A ð22Þ
No-p
with

l¼ ls 1� 3ðAy þ AzÞ
2ðAxcosh ðkHÞ þ Ay þAzÞ

� �
: ð23Þ

Under the considered assumptions (isotropic homoge-
neous material), equation (23) provides an analytical
expression for the magnetostriction strain of the material
under anymultiaxial stress state, with any orientation with
respect to themagneticfield. Threematerial parameters are
introduced: the saturation magnetostriction ls and two
additionalparameterskanda.Theseparameters are related
to standard material parameters by equations (16)–(18).

4 Particular configurations

Further simplifications can be obtained if less complex
loadings are considered. The corresponding expressions are
given hereafter:

–

3

From equation (23), it is verified that under no applied
stress nor magnetic field, the magnetostriction strain is
zero. It is also verified that when the magnetic field is
getting very high, l tends towards ls.
–
 If no stress is applied, themagnetostriction strain reduces
to equation (24):

lðH;0Þ ¼ ls 1� 3

cosh ðkHÞ þ 2

� �
: ð24Þ
–
 If no magnetic field is applied, the magnetostriction
strain reduces to equation (25):

lð0;sÞ ¼ ls 1� 3ðAy þ AzÞ
2ðAx þ Ay þ AzÞ

� �
: ð25Þ
–
 The magnetostriction strain under uniaxial stress and
no applied field is given by equation (26). This expression
describes the so-called DE effect [35,36]:

lð0;sxxÞ ¼ ls 1� 3

Ax þ 2

� �
: ð26Þ
–
 If we consider a uniaxial stress sxx in the direction x,
equation (23) reduces to

lðH;sxxÞ ¼ ls 1� 3

Axcosh ðkHÞ þ 2

� �
: ð27Þ

5 Identification of parameters k and a

The proposed model is based on three material parameters
(ls, k and a). ls is the maximum magnetostriction strain
and its significance is clear. As defined in reference [32], k
can be identified from the initial anhysteretic susceptibility
xo
o of the material under no applied stress (Eq. (28)). This

relation is obtained by combining equations (17) and (18).
The parameter a can be identified from equation (29),
obtained by combining equations (16) and (18). a can also
be extracted from a DEmeasurement curve. The DE effect
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Fig. 1. Magnetostriction strain (maximum principal strain)
under no appliedmagnetic field as a function of stress intensity for
uniaxial (u), equibiaxial (e), hydrostatic (h) and pure shear (s)
stress states (modelling parameters: ls=58×10�6, k=2.2×
10�3 m/A, a=10�7 Pa�1).
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Fig. 2. Longitudinal magnetostriction strain under uniaxial
stress for an iron–cobalt alloy: analytical model (left) and
experimental results from reference [36] (right) (modelling
parameters: ls=58×10�6, k=2.2×10�3 m/A, a=10�7 Pa�1).
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is the loss of linearity in the stress–strain curve of magnetic
materials [35] (see Sect. 5). It is due to themagnetostriction
strain that superimposes to the elastic strain. This
magnetostriction strain under no applied field, and for a
uniaxial stress, is given by equation (26). By considering
the initial slope p of the DE curve, the parameter a can be
obtained (Eq. (30)):

k¼ 3xo
o

Ms
; ð28Þ

a¼ 9lsx
o
o

2m0M
2
s

; ð29Þ

a¼ 3p

ls
; ð30Þ

with p¼∂lð0;sxxÞ
∂sxx

����
sxx¼0

: ð31Þ

6 Model prediction

The proposed model (Eq. (23)) can provide a prediction of
the magnetostriction strain of an isotropic material for any
magneto-mechanical loading, i.e. for any magnetic field H
and any stress tensor s, whatever the relative orientation
between them. It must be noticed that the model describes
the anhysteretic behaviour, so that hysteresis effects are
not included in the proposed description. As an example,
Figure 1 shows the evolution of the magnetostriction strain
under no appliedmagnetic field as a function of stress under
uniaxial, equibiaxial, hydrostatic and pure shear stress
states. These stress states are, respectively, defined by a
diagonal stress tensor with the values (s, 0, 0), (s, s, 0),
(s,s,s)and(s,�s, 0)onthediagonal.Themagnetostriction
strain is measured along the direction x.

The results show very similar evolution as those
obtained for the magnetic susceptibility in reference [32].
It is worth noting that an applied hydrostatic stress has no
effect on the magnetic susceptibility, which is consistent
with the fact that magnetostriction strain is isochoric
(trace (em)= 0).Theuniaxial stress curve (u) corresponds to
the description of the DE effect, as defined in reference [35].

Very few measurements are available in the literature
for an experimental validation under complex loadings.
Most of the available data are restricted to uniaxial con-
figurations for which the stress is applied in the direction
parallel to the magnetic field. Here, the model has been
compared to magnetostriction strain measurements under
uniaxial stress presented in reference [36] for an iron–cobalt
alloy. They consist of anhysteretic measurements on flat
samples of dimensions 2.5� 12.5� 110 mm3 loaded along
the longest direction. The strain was measured using strain
gages. Numerical simulations performed on a geometry
corresponding to the experimental setup have shown that
the form effect (deformation due to the magnetic forces
on the specimen [37]) has little effect on the strain
measurement area, so that the presented data reflect the
magnetostriction strain. Figures 2 and 3 show the strain
No-p
measurements, respectively, parallel and perpendicular to
the magnetic field direction for various stress levels. The
material parameters have been identified as ls=58×10�6,
k=2.2×10�3 m/A and a=10�7 Pa�1. The left side of the
figure shows the prediction of the proposed model, and the
right side shows the experimental results. Regarding the
modelling results, the definition of the magnetostriction
curve (Eq. (27)) incorporates naturally the DE effect,
which is the magnetostriction strain as a function of stress
under no applied field. In order to be consistent with the
representation of experimental results, this initial strain
has been removed in the representation of modelling
results. The plotted numerical results are then defined as
l= l(H, sxx)� l(0, sxx).
4
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Fig. 3. Transverse magnetostriction strain under uniaxial stress
for an iron–cobalt alloy: analytical model (left) and experimental
results from reference [36] (right) (modelling parameters:
ls=58× 10�6, k=2.2× 10�3 m/A, a=10�7 Pa�1).
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Fig. 4. DE effect for an iron–cobalt alloy: longitudinal and
transverse magnetostriction strain as a function of the applied
stress s (uniaxial), modelling (lines) and experimental (points)
results from reference [35]. The dotted line reproduces the
modelling results obtained in reference [35]. The plain line shows
the results from equation (26) (modelling parameters: ls=40×
10�6, a=1.25×10�7 Pa�1).
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Fig. 5. DE effect for pure iron: longitudinal and transverse
magnetostriction strain as a function of the applied stress s
(uniaxial), modelling (lines) and experimental (points) results
from reference [35]. The dotted line reproduces the modelling
results obtained in reference [35]. The plain line shows the
results from equation (26) (modelling parameters: ls=8×10�6,
a=2.4×10�8 Pa�1).
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Considering the simplicity of the model (only Eq. (27) is
used), Figures 2 and 3 show a very satisfactory agreement
between experimental and modelling results. The model
tends to slightly overestimate the longitudinal strain. On
the contrary, the transverse strain is underestimated by the
model. Since an isotropic approach has been used for
the material, the predicted transverse strain is simply
half the longitudinal strain with an opposite sign. The
experimental results do not show a similar ratio, suggesting
an initial anisotropy is not taken into account in the model.
The agreement could probably be enhanced by introducing
additional material parameters, notably to describe initial
anisotropy effects.

Another experimental validation can be made based on
the measurement of the DE effect. The DE effect is an
apparent dependency of the Young’s modulus to the stress
level when a tensile or compressive test is performed on a
magnetic specimen [1]. It is a manifestation of the effect of
stress on the magnetostriction strain (under no applied
magnetic field) [35]. Indeed, the application of stress
modifies the magnetic domain structure and hence
generates a magnetostriction strain. This magnetostriction
strain is superimposed on the elastic strain, so the stress–
strain curve obtained from a tension or compression test is
non-linear. A description of the DE effect based on this
interpretation has been thoroughly discussed in reference
[35]. The modelling approach presented in this paper
describes the DE effect through equation (26). The results
have been plotted in Figures 4 and 5 for an iron-cobalt alloy
(different from the alloy presented in Figs. 2 and 3) and for
pure iron, respectively. The experimental results are simply
extracted from reference [35]. The experimental setup is the
same as the one used for Figures 2 and 3. The results from
the model proposed in reference [35] are also reproduced
with a dotted line.

It can be seen that both models and experimental
results exhibit very satisfying agreement, both in trends
and values. Only two parameters are required for the
proposedmodelling of theDE effect since the parameter k is
No-p
used only under applied magnetic field. The modelling
results from reference [35] have simply been reproduced. In
particular, the material parameters, deduced from single
crystal data, have not been changed. It is clear that the
modelling of the DE effect (dotted lines) could be improved
by fitting the modelling parameters to the experimental
data. On the contrary, the modelling parameters used in
the present approach (Eq. (26)) have been adjusted to the
experimental data, which explains the slightly better
agreement observed. The main difference between the two
modelling approaches is that the description proposed in
reference [35] is predictive (in the sense that material
parameters can be deduced from the basic properties of
5
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single crystals) but restricted to the case where nomagnetic
field is applied. On the contrary, the present model is more
phenomenological (in the sense that the material param-
eters have to be fitted on macroscopic measurements) but
also more general in the sense that it can combine the
application of stress and magnetic field (see Figs. 2 and 3).
It can again be observed that the measured transverse
strain is not half the longitudinal strain in amplitude,
contrarily to the hypothesis made in both models. This can
be attributed to anisotropy effects not taken into account
in the modelling approaches.
7 Conclusion

In this paper, an original analytical model for the definition
of the stress-dependent magnetostriction strain of magnet-
ic materials is proposed. It is based on a very simplified
description of the energetic equilibrium underlying mag-
netic behaviour. The approach results in a simple formula
to express the effect of multiaxial magneto-mechanical
loadings on the magnetostriction strain. The multiaxiality
of stress is naturally introduced in this approach, and no
assumption is made on the relative orientation between
stress and magnetic field. Only three materials parameters
are required to describe this complex magneto-mechanical
behaviour. The three parameters can be, respectively,
identified from an anhysteretic curve under no applied
stress, a magnetostriction curve under no applied stress
and a DE effect measurement. They can also be fitted from
experimental results under stress. This analytical model
can be useful for electromagnetic design when users require
the implementation of a magnetostriction model into
standard structural analysis tools. Due to the strong
assumptions made in the construction of the model, it is
expected that limitations will be found in cases of strong
anisotropy or high heterogeneities.
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