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A Note on the Effective Magnetic Permeability of Polycrystals
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Many classical estimates for the effective behavior of heterogeneous materials can be reinterpreted in terms of inclusion problems.
However, in the case of cubic polycrystals, a cubic permeability tensor for single crystals has to be written. In the framework of linear
behavior, the description of the cubic symmetry reduces to isotropy. The heterogeneity of polycrystals, which results from single crystal
anisotropy, cannot be described, and the classical estimates for the overall behavior of heterogeneous materials cannot be used. In this
paper, we propose a particular description of the cubic symmetry for the magnetic permeability. We then derive estimates for the ef-
fective permeability of polycrystals from the solution of the basic inclusion problem, for both macroscopically isotropic and anisotropic

polycrystals.

Index Terms—Cubic symmetry, effective properties, homogenization, inclusion, magnetic permeability, polycrystal.

1. INTRODUCTION

HE determination of the effective properties of heteroge-
T neous materials is a long-standing problem in many fields
of physics. The purpose is to deduce the material constants of a
fictive homogeneous material equivalent to the heterogeneous
real one from the properties of its constituents and some as-
sumptions on the microstructure. In the case of magnetic prop-
erties, the problem can be presented in the following way: the
material is constituted of n phases ¢ for which the behavior is
known. Under the assumption of linear magnetic properties, the
constitutive law is written:

Bi — 1Hi )

=

where B and H! are the magnetic induction and the magnetic
field in the phase ¢ and Ei its magnetic permeability.! The ob-
jective is to define the effective permeability tensor HEH of the
heterogeneous material, linking the mean magnetic induction in
the material B to the mean magnetic field in the material H, ac-
cording to (2)2:

B= <B1> — ﬁeffﬁ — ﬁeﬂ'<Hi>' )
The simplest general estimates, the Wiener bounds [1], are

obtained assuming uniform inagnetic field [H' = H, see (3)] or
magnetic induction [B! = B, see (4)] within the material
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Color versions of one or more of the figures in this paper are available online
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ITn the anisotropic case, the magnetic permeability is a second order tensor.
2The operator (-} denotes an average operation over the volume.

The Wiener lower and upper bounds are thus given
by relation (5):

1
eff _ i—1>
By = <g

An alternative estimate can be obtained assuming uniform

magnetization within the material3 (M! = M):

T3
and p°
Byt

= (1) (5)

H= (H) = <§i_1Mi> - <§i‘1>m ©)

leading to the following estimate for the effective permeability
tensor:

eff i —1\—1
ey, = oL+ {(p' = pol)=7) 7 )

Hashin and Shtrikman [2] derived more restrictive bounds
in the case of isotropic biphasic composites. Another estimate,
based on a geometric averaging operation, has been proposed
by Lichtenecker [3]. Other estimates, based on more compli-
cated hypotheses on the microstructure, have been proposed
[4]1-[8]. These bounds or estimates have been mainly devel-
oped for composite materials, with a limited number of dis-
tinct phases, mostly biphasic materials. The problem of poly-
crystalline media is rarely treated.4 Some authors addressed the
case of polycrystalline media [9]-[12], but the crystalline sym-
metry is limited to transverse isotropy in these contributions.
The cubic symmetry is not taken into account. A way to describe
the cubic crystalline symmetry for the magnetic behavior is pro-
posed in this paper (Section IV). Based on the classical solution
for the inclusion problem (Section II), several estimates for the
effective behavior of heteregeneous materials can be found. The
classical bounds and estimates for biphasic materials are recov-
ered (Section IIT) and estimates for polycrystals with cubic crys-
talline symmetry are derived (Section V).

3M' and M are the magnetization vectors respectively in phase ¢ and in the
material. )‘ denotes the second order susceptibility tensor of phase ¢, verifying:

uox‘ = [L — oL, I denotes the second order identity tensor, and yio the
vacuum permeability (;10 = 471077 H/m).
“In the case of anisotropic single crystal behavior, the polycrystal can be seen

as a n-phasic material. Each phase differs from another only by its crystallo-
graphic orientation.
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Infinite medium: g™

Fig. 1. Basic inclusion problem.

II. BASIC INCLUSION PROBLEM

Many homogenization models are based on the resolution of
the problem of an ellipsoidal inclusion embedded in an infinite
medium. The solution of this problem is briefly reminded here-
after.

The infinite medium, as well as the inclusion, is supposed
to be homogeneous. The magnetic behavior is supposed linear
and, in the case of the infinite medium, isotropic (permeability
p™ and gY). In such conditions, the magnetic field H! in the
inclusion is homogeneous and can be derived as a function of
the applied field H® (8)

H' = @™ (0™(L- N) + Np')~'H". ®)

The tensor IV is diagonal and called the demagnetizing tensor.
The demagnetizing factors N; (j = {1,2,3}) are computed
from the following elliptic integral [13]:

ds

/o (s +a3) /(s +af) (s + a3) (s + a3)

)
where ai,a9, and az denote the ellipsoid’s semi-axes (see
Fig. 1). One can notice N1 + N, + N3 = 1. In the general case,
numerical computations are needed to obtain the demagnetizing
factors. In the case of a spherical inclusion, the expression of
the demagnetizing factors can be derived analytically

a10a2a3
Nj=—

(10)

For the sake of simplicity, we will focus our study on that
case. The magnetic field H' in the inclusion can then be written:

H' = 3p™ (2™ + ') 'H. (an
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The effective behavior of an heterogeneous medium can be
defined through the definition of its magnetic induction B, con-
sidering that each phase behaves as an inclusion’ embedded in
an infinite medium with permeability p™ (12)

E _ ﬁeff <H1>

— <ng1>
(wmt (2umr 4 48) 1)

. A1
= <3umg‘ (2um£—|—£) >H°.

12)
The applied field in the inclusion problem H¢ (different from

the mean magnetic field H in the real heterogeneous material)
is defined with respect to (13):

. A 1 —
H° /| (H)= <3um (2um£+ﬁ‘) >H —H 13
H? is then given by (14):
N A
H° = <3um (thm£+ ﬁ‘) > H.

Using (12) and (14), the effective permeability is defined ac-
cording to (15):

(14)

-1

. (15

Several estimates of the effective permeability can be ob-
tained through different choices of the permeability ;™ of the
infinite medium. The appropriate choice will depend on the mi-
crostructure of the heterogeneous material. This approach en-
ables to recover classical estimates in the case of biphasic com-
posites (Section III). However, as shown in Section IV, it cannot
be applied to most of polycrystals unless a definition for a cubic
single crystal permeability is proposed.

III. PERMEABILITY OF BIPHASIC COMPOSITES

In the case of a biphasic material with isotropic constituents
(phase 1 with volumetric fraction f; together with phase 2 with
volumetric fraction f» (f1 + fo = 1)), (15) can be written:

H1 H2
et — I 2™ + ) 207 + po
fi n 1-fi '
2u™ oy 2™+ o

(16)

Any value of ;™ (from O to infinity) can be considered, rep-
resenting various kinds of microstructure for the composite. It
can be noticed that in the case of an homogeneous medium, for
which f; = 1 (resp. f1 = 0), (16) defines an effective perme-
ability ®% = i1 (resp. u®ff = puy), whatever the choice of ;™.

In the general case of biphasic materials, some particular
choices of ™ allow to recover some classical estimates.

5The shape chosen for the inclusion depends on the distribution of the phases
in the composite. Spherical inclusions are associated to an isotropic distribution
and ellipsoidal inclusions to an anisotropic one. This distribution of the phases
is not related to the shape of the phases in the real material.
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1) Wiener lower and upper bounds are obtained choosing re-
spectively 4™ = 0 and ™ — oo:

1
eff
= 17
M W— ﬂ N 1 — fl ( )
M1 H2
eff _
oy = fupn + (1= f1)pe. (18)

2) Hashin and Shtrikman lower and upper bounds are ob-
tained choosing respectively (assuming p1 < po) ™ =
p1 and ™ = po:

off 2fip1 + (3 =2f1) 2
= 19
foms- (3= fu)ur + frpe (19)
1+2 2(1 —
P gy = ST 2 A AL = o

(1= fu)ur + 2+ fi)pe

As mentioned in [14], Maxwell-Garnett estimates are
equivalent to Hashin and Shtrikman bounds.

3) Bruggeman estimate is obtained choosing ™ = p°f.
p°f is then the solution of the following self-consistent
equation:

py — pof po — pf
—+ (11— fi);——=0. 21
lelLeﬂ«_i_u1 ( f1)2ueﬁ+ﬂ2 2D

According to these results, the classical estimates for the mag-
netic behavior of biphasic composites can be reinterpreted as
inclusion based models. The application of such an approach
to polycrystalline media is then expected to produce several
estimates for polycrystal behavior. However, since the hetero-
geneity of polycrystals is related to single crystal anisotropy,
this anisotropy has to be described.

IV. CUBIC PERMEABILITY

Most ferromagnetic single crystals exhibit a body cubic cen-
tered (BCC) or face cubic centered (FCC) structure. For both
structures, the magnetic behavior of the single crystal exhibits a
cubic symmetry. Let us try to define the magnetic permeability
second order tensor Hi of such a material, following (22), written
in the crystallographic frame:

B = ,'H' (22)
with
. K1t H12 H13
ﬁl = | po1 o2 o3 . (23)
31 H32 K33

CF

Since the induction B! has to be parallel to the applied field
Hi when the field is along a symmetry axis, and considering
a field along (100) directions, all extra-diagonal terms of
Hi vanish. Moreover, according to the cubic symmetry, the
behavior of all (100) directions has to be identical. Then, it
appears that (111 = pe2 = p33, and (22) reduces to

B! = ,'H! (24)
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TABLE I
PURE IRON SINGLE CRYSTAL PERMEABILITY ALONG (100}, (110), AND (111)
DIRECTIONS, ACCORDING TO WEBSTER EXPERIMENTAL MEASUREMENTS [15]

Magnetic field 1100 H111 K110 3u111 + H100
(A/m) 4] £o 2o 40
400 2750 1625 1800 1905
2000 835 525 615 605

with p! a scalar value. Cubic symmetry is then reduced to
isotropy. Magnetic permeability is on that point analogous to
the compressibility modulous in elasticity: if the behavior is
identical in three perpendicular directions, then it is isotropic.
This conclusion points out a limitation of the use of constant
second order tensors for the description of magnetic behavior.
Indeed, many experimental observations reveal that cubic single
crystals are not magnetically isotropic (see for instance [15] for
iron and nickel or [16] for Terfenol-D). In such conditions, the
definition of the effective magnetic behavior of polycrystals has
no relevance since a polycrystal is defined as an aggregate of
isotropic identical phases, meaning a homogeneous material.

Still in the framework of linear behavior, a particular expres-
sion for the permeability, in accordance with the cubic sym-
metry, can be suggested. This expression is inspired from the
definition of the magneto-crystalline anisotropy energy of cubic
crystals (see for instance [17]):

Ni«, = p100 + 3(pa11 — pao0) (V73 + 1373 +301)  (25)

where [y1, V2, v3] are the direction cosines of the considered di-
rection 7. 1100 and pq11 are the extremal values of the perme-
ability respectively along the (100) and (111) directions. Under
this assumption, the permeability in (110) is defined by relation
(26):

pi1o = 3(3/“11 + 1100)- (26)

The values of the permeability of the iron single crystal, fol-
lowing a secant definition, identified from Webster experimental
results [15] are given in Table I.

The spatial representation of the permeability is shown
in Fig. 2 for an iron single crystal under an applied field of
400 A/m.

A more refined description introduces the permeability /4119
in (110) directions as a parameter:

/tiw = p0o + 4(p110 — t100) (V13 + 1373 +377)
+9(3p111 + p10o — 4p110) (VEV33) - (27)

However, as shown in Fig. 3, the introduction of an addi-
tional parameter does not significantly modify the definition of
the cubic permeability in the case of iron, since j11¢ is close to
expression (26).

Using the cubic definition of the permeability of the single
crystal given by (25), estimates for the behavior of polycrystals
can be derived from (15).



3156

12700

<001>

12600

12500

12400

12300

12200

2100

2000

1900

1800

1700

Fig. 2. Spatial representation of the relative permeability (uﬂr /o) of an iron
single crystal for H = 400 A/m, using a representation with two parameters.
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Fig. 3. Comparison between the permeability obtained using a representation
with two parameters (line) and with three parameters (dashed line) for an applied
field level of 400 A/m. Projection in the plane y = z, including directions [100],
[111], and [011].

V. PERMEABILITY OF POLYCRYSTALS

The effective permeability in the direction -y can be obtained
through a projection of relation (15) along -y:

phy
2,LLm + 'LLl’Y

’Y:—< 1 >.
2/1‘m+/1‘i'y

If the self-consistent method is chosen, the infinite medium
permeability is not a constant but the effective permeability
(p™ = p°® ), so that (15) becomes:

eff (28)

py
1
20 4y

eff __
’Y_< : >
ff i
2u° 5ty

(29)
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Fig. 4. Normalized effective magnetic permeability of an isotropic polycrystal
as a function of the single crystal anisotropy ratio @ = ftig0/tt111: Wiener,
Hashin & Shtrikman bounds and self-consistent estimate.

Equation (29) can be written in the form of the classical
Bruggeman relation (30)

i i g
R

—V ) =0. 30
2MBH~/+M17 ( )

A. Isotropic Polycrystals

If the crystallographic orientation of grains in the poly-
crystal is random, the macroscopic behavior is isotropic. The
magnetic permeability is then defined by a scalar value p°f.
The value of ;°® has been estimated according to several
homogenization schemes (Wiener, Hashin and Shtrikman,
self-consistent) as a function of the single crystal anisotropy
ratio a(a = p100/14111)- The results are presented in Fig. 4. The
case of the upper Wiener bound is particularly easy to calculate
analytically and can be expressed as follows:

2 3

ptyy = 5 H100 + 5L

€1y

As far as low anisotropy ratio (¢ < 2) are considered, the
Wiener lower and upper bounds are very close, and all the ho-
mogenization schemes give similar results. When considering
higher single crystal anisotropy ratio, the differences between
the schemes become more sensitive: for ¢ = 5, the difference
between the Wiener lower and upper bounds is more than 15%.

B. Anisotropic Polycrystals

In most cases, the macroscopic anisotropy of polycrystals is
the result of the combination of the single crystal anisotropy
to crystallographic texture. The crystallographic texture is de-
scribed through an orientation distribution function (ODF), rep-
resentative of the orientations of grains in the polycrystal [18].
A scanning electron microscope (SEM), with an electron back
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Fig. 5. (100), (110}, and (111) discrete pole figures for a nonoriented 3%
silicon-iron steel.
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Fig. 6. Normalized magnetic permeability in the sheet plane: Wiener, Hashin
& Shtrikman bounds and self-consistent estimate for an anisotropy ratio a = 2.

scatter diffraction (EBSD) measurement system, can provide a
discrete orientation data file for the crystallographic texture of a
given material. An example of pole figures, using 396 orienta-
tions, is shown for a nonoriented 3% silicon-iron steel in Fig. 5.

This discrete ODF can be used in (28) or (30) for the cal-
culation of the effective permeability of anisotropic polycrys-
tals. The corresponding results, according to several estimates,
are shown in Figs. 6 and 7, respectively, for a single crystal
anisotropy ratio & = 2 and @ = 5. It must be noticed that the
scales of polar Figs. 6 and 7 are not centered on the origin. This
choice has been made in order to highlight the differences be-
tween the estimates.

It can be seen that the proposed approach allows the descrip-
tion of the macroscopic anisotropy of texturized polycrystals.
As expected, for low anisotropy ratio a, corresponding to low
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Fig. 7. Normalized magnetic permeability in the sheet plane: Wiener, Hashin
& Shtrikman bounds and self-consistent estimate for an anisotropy ratio a = 5.

applied fields, the contrast between the several estimates is tiny.
In Fig. 6, Hashin and Shtrikman bounds and self-consistent esti-
mates are very close. But for higher anisotropy ratio, differences
between the different approaches becomes significant. More-
over, the description of the macroscopic anisotropy is not strictly
identical from one approach to another. Then, it becomes im-
portant to choose an appropriate homogenization model for the
definition of the effective permeability.

VI. DISCUSSION

The choice of the most appropriate model (namely the appro-
priate value of p™) for a given heterogeneous material is a key
point, particularly for high anisotropy ratio of the single crystal.

Experimental results could help to evaluate the different
possible choices. Unfortunately, the result is expected to be
strongly dependent on the microstructure of the particular
chosen material. Moreover, to our knowledge, no publication
associates macroscopic polycrystalline permeability measure-
ment to corresponding single crystals data. As an example, the
experimental results from [19], for a material with a similar
crystallographic texture of the one presented in Fig. 5, have
been replotted® in Fig. 8, to highlight the anisotropic behavior.

For very low magnetic field, the relative anisotropy has a sim-
ilar appearance in experiment and modeling. It corresponds to
the linear behavior stage for the material. As soon as the mag-
netic field level reaches about 200 A/m, the nonlinear stage be-
gins, and the hypotheses of the proposed model do not apply.

A second strategy to choose the value of p™ in the model
would be to consider the particular microstructure of the
modelled material. In the case of biphasic materials, if the
microstructure is constituted of inclusions of phase 1 embedded
in a continuous matrix of phase 2, the choice of the Hashin &
Shtrikman bound with p™ = pue is expected to give accurate
results. In the case of polycrystals, the self-consistent scheme
is known to be well suited to random grain microstructure.
It is probably the method to recommend. Unfortunately, it is
also the most complicated to implement since it is based on

6Tt must be noticed that the single crystal permeability has not been char-
acterized, so that the measured permeability has been normalized to the value
obtained in the rolling direction (RD).
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Fig. 8. Normalized magnetic permeability in the sheet plane: experimental re-
sults for a nonoriented 3% silicon-iron steel [19].

an iterative procedure. For simplicity reasons, the HS bounds
can be preferred. If a rough estimate is sufficient, the formula
given by (31) is particularly simple, but does not incorporate
any anisotropy information.

VII. CONCLUSION

A model for the prediction of the effective magnetic perme-
ability of heterogeneous linear materials has been presented. It
is based on the solution of the basic inclusion problem. This
approach enables to recover some classical estimates obtained
under different assumptions for polyphasic materials. In the case
of linear cubic polycrystals, the classical description of the per-
meability through a second order tensor has been shown to be in-
efficient. A formulation has been proposed to describe the local
anisotropy of cubic single crystals. Combined with the grain
orientations, this approach allows the prediction of the macro-
scopic anisotropy of polycrystals. Several estimates, classical in
the case of biphasic materials, have been derived for polycrys-
tals, and can lead to significantly different predictions for the
macroscopic behavior.

However, the proposed approach is restricted to linear mag-
netic behavior. The case of nonlinear properties is much more
complicated. Nevertheless, the resolution of nonlinear homog-
enization problems generally rely on the resolution of a linear
comparison problem (see for example [20]). In that context, the
knowledge of solutions for linear homogenization problems is
essential.
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