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Abstract. The ΔE effect is often presented as the dependency of the Young’s modulus of a material on
its state of magnetization. Nevertheless, the elastic properties of a magnetic material do not depend on
the magnetization state. Actually, the sensitivity of the magnetostriction strain to the application of a
stress explains the ΔE effect. According to this statement, a semi-analytical model for the ΔE effect is
proposed, in which magnetization rotation is not considered. An experimental procedure to measure the
ΔE effect in magnetic materials is then built-up. Experimental and modeling results are finally compared,
with satisfying agreement.

PACS. 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction – 46.25.Hf
Thermoelasticity and electromagnetic elasticity

1 Introduction

The Young’s modulus E of a material is the ratio between
the stress σ and the elastic strain εel – measured in the
direction parallel to the applied stress – in the case of a
tension or compression test (Eq. (1))

E =
σ

εel
· (1)

When a stress is applied to a magnetic material, stress-
strain response appears to be non-linear (Fig. 1). This
effect is called the ΔE effect [1,2]. It is often presented
as a dependency of the Young’s modulus E to the stress
level. On the other hand, the ΔE effect depends on the
state of magnetization of the material as illustrated in
Figure 1: the Young’s modulus of a demagnetized speci-
men appears to be lower than the Young’s modulus of the
same specimen magnetized at saturation. Thus, the ΔE
effect could be seen as an apparent loss of linearity in the
elastic behavior of demagnetized specimens. But it can
also be interpreted as a consequence of the effect of stress
on the magnetostriction strain (magnetostriction is the
spontaneous deformation associated to magnetic domain
structure evolution). The ΔE effect can consequently be
dissociated from the elastic behavior.

Indeed, the application of stress modifies the magne-
tization state of magnetic materials and generates a mag-
netostriction strain. This magnetostriction strain εμ is su-
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Fig. 1. Illustration of ΔE effect on a tensile stress-strain curve
(ε is the total strain).

perimposed to the elastic strain εel, so that the total mea-
sured strain ε is defined by equation (2), all the strains
being measured in the direction parallel to the applied
stress

ε = εμ + εel. (2)

The apparent Young’s modulus Ea is defined by equa-
tion (3)

Ea =
σ

εμ + εel
· (3)

In the case of a saturated material, the magnetic do-
main structure has reached a saturated configuration and
the magnetostriction strain cannot evolve anymore. The
apparent Young’s modulus Es

a is then defined by equa-
tion (4), corresponding to the original definition of the

Article published by EDP Sciences

http://www.epjap.org
http://dx.doi.org/10.1051/epjap/2009012
http://www.edpsciences.org


The European Physical Journal Applied Physics

Young’s modulus given by equation (1)

Es
a =

σ

εel
= E. (4)

For a given initial magnetic configuration, the ΔE effect
can be quantitatively defined as a function of the applied
stress σ following equation (5):

ΔE

E
=

E − Ea(σ)
Ea(σ)

=
εμ(σ)
εel(σ)

· (5)

The value of the Young’s modulus E can be easily identi-
fied thanks to an usual tensile test1, for a stress level such
that the stress-strain curve is linear. In the linearity area
of the curve, we define:

E =
dσ

dε
· (6)

A predictive model for the ΔE effect should then rely on
the description of the effect of stress on the magnetostric-
tion strain. Very few models are available in the literature.
Squire treated the case of amorphous ribbons [3], but did
not address the case of crystalline materials. This latter
point is the purpose of that paper. After a brief presenta-
tion of the energetic terms involved in the magnetic equi-
librium of a ferro- or ferri-magnetic body volume element,
a simplified approach for the ΔE effect in cubic single
crystals is presented, in which magnetization rotation is
not considered2. It is applied both for materials with pos-
itive and negative anisotropy constants. An extension to
the behavior of polycrystals is then proposed and results
are compared to original experimental ones.

2 Magneto-elastic equilibrium

The magneto-elastic equilibrium of a ferro- or ferri-
magnetic body can be seen as the result of a competition
between several energetic contributions [4].

– The exchange energy W ex is related to the ferromag-
netic coupling effect between neighboring atoms, tend-
ing to favor an uniform magnetization in a volume el-
ement.

– The magneto-crystalline energy WK tends to align the
magnetization along particular directions, called “easy
axes”. These easy magnetization directions are mostly
connected to crystallographic structure. In the case of
iron, whose crystallographic structure is body cubic
centered, the anisotropy constant K1 is positive and
magnetization is aligned along 〈100〉 axes (six direc-
tions3). In the case of Nickel, whose crystallographic
structure is face cubic centered, the easy axes are the
eight 〈111〉 directions (Fig. 2).

1 Whatever the magnetic state of the specimen.
2 Rotation is the mechanism considered in [3]. In that sense,

our proposal is complementary to this previous one and will
not apply to amorphous materials.

3 The notation used for the crystallographic directions refers
to the Miller indices.

[100]

[011]

[111]

Fig. 2. Crystallographic directions in the cubic symmetry
(Miller indices).

– The magneto-static energy Wmag tends to align the
magnetization direction with the magnetic field direc-
tion, or, at least, to energetically favor domains for
which the magnetization direction is close to the mag-
netic field direction.

– The elastic energy W el introduces the magneto-elastic
interactions in a ferromagnetic crystal. It is often called
“magneto-elastic” energy.

The competition between these energetic contributions
explains the existence of the typical magnetic domain mi-
crostructure of magnetic materials. Each magnetic domain
is uniformly magnetized at saturation. For low magnetic
field level, the magnetization of a magnetic domain is
aligned along an easy axis.

The magnetization process is the result of two con-
comitant processes. On one hand, the magnetic walls, sep-
arating one domain from another, are moving, modifying
the mean magnetization in the material. On the other
hand, the magnetization direction can rotate out of its
initial easy axis. This rotation mechanism is encountered
when the energy given by the applied magnetic field is high
enough to compensate the magneto-crystalline anisotropy
energy. This situation is usually reached for medium to
high magnetic fields. The application of a stress signifi-
cantly modifies the magnetization of the material, through
the contribution of the elastic energy.

Finally, the elastic energy strongly depends on the lo-
cal magnetostriction strain, through the mechanical in-
compatibilities. This magneto-elastic coupling is at the
origin of the ΔE effect.

3 A simplified approach for the ΔE effect
in single crystals

We develop hereafter a simplified approach for the descrip-
tion of the ΔE effect in single crystals. This approach
is inspired by a multiscale model for the prediction of
magneto-elastic reversible behavior of ferromagnetic ma-
terials presented in [5]. The restriction to the case of no
applied magnetic field allows an analytical derivation of
the ΔE effect.
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The approach is limited to the case when no magnetic
field is applied, so that the magneto-static energy does
not appear in the definition of the magnetic equilibrium
(Wmag = 0).

We suppose that no rotation mechanism occurs in the
magnetic domains. The magneto-crystalline anisotropy
energy is then uniform within a single crystal and does
not participate to the evolution of the magnetostriction
strain (WK = const.). The magnetization in a domain is
always aligned along an easy crystallographic direction.

We choose a simplified description of the single crystal
microstructure. The crystal is seen as an aggregate of mag-
netic domains. Considering that only easy directions can
be encountered for the magnetization in the domains, we
divide the single crystal into domain families (num. α),
each family being associated to the corresponding easy
axis. In the case of 〈100〉 easy axes, only six domain fami-
lies are possible (α = {1, . . . , 6}), eight in the case of 〈111〉
easy axes (α = {1, . . . , 8}).

The exchange energy W ex is responsible for the local
coupling between magnetic moments. It does not partici-
pate anymore in the energetic description of such an ag-
gregate (wall energy is not considered, exchange energy is
hidden in the concept of domain family).

In such conditions, the elastic energy will be the only
energetic term explicitly considered in the description of
the magnetic equilibrium of the single crystal, because this
term is not identical from one domain family to another.
The elastic energy W el

α of a domain α can be written [5]:

W el
α = −σc : εμ

α (7)

where σc is the mean stress – second order – tensor within
the single crystal and εμ

α is the magnetostriction strain –
second order – tensor in the domain family α. The latter,
assumed to be homogeneous within a domain family, is
written, in the crystallographic coordinate system of the
cubic crystal (see for instance [6]):

εμ
α =

3
2

⎛
⎝λ100(γ2

1 − 1
3 ) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ2
2 − 1

3 ) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ2
3 − 1

3 )

⎞
⎠· (8)

(γ1, γ2, γ3) are the direction cosines of magnetization in
the domain family α, λ100 and λ111 are the magnetostric-
tive constants of the material. If we consider a multiaxial
applied stress state σc, written in the crystallographic co-
ordinate system (Eq. (9)), the elastic energy (Eq. (7)) can
be written in the form of equation (10).

σc =

⎛
⎝σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞
⎠ (9)

W el
α = − 3

2λ100

[
σ11(γ2

1 − 1
3 )+σ22(γ2

2 − 1
3 )+σ33(γ2

3 − 1
3 )

]
−3 λ111 (σ12 γ1 γ2 + σ13 γ1 γ3 + σ23 γ2 γ3) .

(10)
It has to be emphasized that the condition on the
magneto-crystalline energy (WK = const.) supposes that

no magnetization rotation occurs. In particular, it means
that the level of stress is not high enough to generate mag-
netization rotation in the domains. This condition can be
expressed as |σc : εμ

α| � |K1| in each domain.
The equilibrium configuration can be defined through

the relative proportion of each domain family in the crys-
tal. The volumetric fraction of a domain family is obtained
using an explicit relation proposed by [7]:

fα =
exp(−AsWα)∑

α

exp(−AsWα)
=

exp(−AsW
el
α )∑

α

exp(−AsW
el
α )

· (11)

As being a material parameter linked to the initial anhys-
teretic susceptibility χo and to the saturation magnetiza-
tion Ms [5]:

As =
3χo

μoM2
s

· (12)

For further simplification, we introduce the quantity S:

S =
∑
α

exp(−AsW
el
α ). (13)

An analytical model for the ΔE effect can then be de-
rived from equation (11). Two cases are successively con-
sidered: material with 〈100〉 easy magnetization axes (pos-
itive anisotropy constant) and material with 〈111〉 easy
magnetization axes (negative anisotropy constant).

3.1 Material with 〈100〉 easy magnetization directions

3.1.1 Definition of variables

Six domain families have to be considered: they will be
noted abc. The subscripts abc can take the value 100, 100,
010, 010, 001 and 001. The magnetization rotation mech-
anism being neglected, the magnetostriction strain tensor
in each domain family is greatly simplified:

εμ
abc =

1
2
λ100

⎛
⎝ 3a2 − 1 0 0

0 3b2 − 1 0
0 0 3c2 − 1

⎞
⎠. (14)

The elastic energy for each domain family is then4:

Wabc =−1
2
λ100

(
(3a2−1)σ11+(3b2 − 1)σ22+(3c2−1)σ33

)
.

(15)
The quantity S is given by:

S = 2
[

exp
(

Asλ100 (σ11 − 1
2

(σ22 + σ33))
)

+exp
(

Asλ100 (σ22 − 1
2

(σ11 + σ33))
)

+exp
(

Asλ100 (σ33 − 1
2

(σ11 + σ22))
)]

. (16)

4 It can be noticed that the shear terms of the stress tensor,
expressed in the crystal coordinate system, do not appear in
the definition of the elastic energy.
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We deduce the associated volumetric fractions for each
domain family:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f100 = f100 =
1
S

exp
(
Asλ100 (σ11 − 1

2 (σ22 + σ33))
)

f010 = f010 =
1
S

exp
(
Asλ100 (σ22 − 1

2 (σ11 + σ33))
)

f001 = f001 =
1
S

exp
(
Asλ100 (σ33 − 1

2 (σ11 + σ22))
)
.

(17)
We can verify that, in accordance with experimental ob-
servation, no magnetization is created in the single crystal
by application of a stress:

−→
Mc =

∑
α

fα
−→
Mα = Ms

∣∣∣∣∣∣
f100 − f100
f010 − f010
f001 − f001

=
−→
0 . (18)

But a magnetostriction strain εμ
c is created by application

of a stress:
εμ

c =
∑
α

fα εμ
α �= 0· (19)

3.1.2 Uniaxial loadings

The case of a multiaxial applied stress can be first reduced
to the simplified case of uniaxial loadings (tensile or com-
pressive stress).

An uniaxial stress of amplitude σ along the [100] di-
rection5 leads to the strain εμ

100 measured in the direction
parallel to the applied stress6:

εμ
100 =

λ100

[
1 − exp

(− 3
2Asλ100 σ

)]
1 + 2 exp

(− 3
2Asλ100 σ

) · (20)

An uniaxial stress of amplitude σ along the [110] direc-
tion7 leads to the strain εμ

110 measured in the direction
parallel to the applied stress:

εμ
110 =

λ100

[
1 − exp

(− 3
4Asλ100 σ

)]
2

[
2 + exp

(− 3
4Asλ100 σ

)] · (21)

If an uniaxial stress of amplitude σ is applied along the
[111] direction8, we get:

f100 = f100 = f010 = f010 = f001 = f001 =
1
6

(22)

so that:
εμ
111 = 0. (23)

These results are plotted in Figure 3 in the case of iron
for which λ100 = 21 × 10−6 [8]. The value for As is 5 ×
10−3 m3 J−1.

5 σij = 0 except σ11 = σ.
6 If εµ

n is the projection of the tensor εµ in the direction n,
we have: εµ

n = tn εµ n.
7 σij = 0 except σ11 = σ22 = σ12 = 1

2
σ.

8 σij = 1
3
σ.
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Fig. 3. (Color online) ΔE effect in the case of iron single
crystal.

We can notice the dissymmetry between the tension
and compression behaviors, visible for example in the
values of the strain when – mechanical – saturation is
reached: ⎧⎨

⎩
lim(σ→+∞) εμ

100 = λ100

lim(σ→−∞) εμ
100 = −1

2
λ100

(24)

⎧⎪⎨
⎪⎩

lim(σ→+∞) εμ
110 =

1
4
λ100

lim(σ→−∞) εμ
110 = −1

2
λ100.

(25)

3.1.3 Multiaxial loadings

More general and more complicated mechanical loadings
can also be considered. We can study the particular cases
of equi-bitension and hydrostatic pressure and compare
them to uniaxial stress.

For example, under the hypotheses made, the magne-
tostriction strain in a 〈100〉 direction is defined, for any
stress state, as:

εμ
100 = λ100 (2f100 − f010 − f001)

=
λ100

S

[
2 exp

(
Asλ100 (σ11 − 1

2 (σ22 + σ33))
)

−exp
(
Asλ100 (σ22 − 1

2 (σ11 + σ33))
)

−exp
(
Asλ100 (σ33 − 1

2 (σ11 + σ22))
)]

.
(26)

The magnetostriction strain in a 〈111〉 direction is defined,
for any stress state, as:

εμ
111 = 0. (27)

Figure 4 shows the response of a single crystal under uni-
axial9, equibiaxial10 and hydrostatic11 loading along 〈100〉
directions.

We observe that a hydrostatic stress state has no effect
on the magnetostriction strain.

9 σij = 0 except σ11 = σ.
10 σij = 0 except σ11 = σ22 = σ.
11 σij = 0 except σ11 = σ22 = σ33 = σ.
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Fig. 4. (Color online) ΔE effect in the case of iron single
crystal for a uniaxial, equibiaxial and hydrostatic loading along
〈100〉 directions.

3.2 Material with 〈111〉 easy magnetization directions

3.2.1 Definition of variables

In that case, eight domain families have to be considered:
they will be noted abc. The subscripts abc take the val-
ues 111, 111, 111, 111, 111, 111, 111 and 111. The mag-
netization rotation mechanism being neglected, the mag-
netostriction strain tensor in each domain family is also
greatly simplified:

εμ
abc =

1
2
λ111

⎛
⎝ 0 ab ac

ab 0 bc
ac bc 0

⎞
⎠. (28)

The elastic energy for each domain family is then12:

Wabc = −λ111 (ab σ12 + ac σ13 + bc σ23). (29)

The quantity S is given by:

S = 2 [ exp (Asλ111 (σ12 + σ13 + σ23))

+exp (Asλ111 (−σ12 − σ13 + σ23))

+exp (Asλ111 (−σ12 + σ13 − σ23))

+exp (Asλ111 (σ12 − σ13 − σ23))] .

(30)

We deduce the associated volumetric fractions for each
domain family:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f111 = f111 =
1
S

exp (Asλ111 (σ12 + σ13 + σ23))

f111 = f111 =
1
S

exp (Asλ111 (−σ12 − σ13 + σ23))

f111 = f111 =
1
S

exp (Asλ111 (−σ12 + σ13 − σ23))

f111 = f111 =
1
S

exp (Asλ111 (σ12 − σ13 − σ23)) .

(31)
12 It can be noticed that the diagonal terms of the stress ten-
sor, expressed in the crystal coordinate system, do not appear
in the definition of the elastic energy.
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Fig. 5. (Color online) ΔE effect in the case of nickel single
crystal.

Here again, we verify that no magnetization can be created
by application of a stress, but a magnetostriction strain
εμ

c appears:
εμ

c =
∑
α

fα εμ
α �= 0. (32)

3.2.2 Uniaxial loadings

We study first the uniaxial case. An uniaxial stress of am-
plitude σ along the [111] direction leads to the strain εμ

111
measured in the direction parallel to the applied stress:

εμ
111 =

λ111

[
1 − exp

(− 4
3Asλ111 σ

)]
1 + 3 exp

(− 4
3Asλ111 σ

) · (33)

An uniaxial stress of amplitude σ along the [110] direction
leads to the strain εμ

110 measured in the direction parallel
to the applied stress:

εμ
110 =

1
2
λ111 tanh

(
1
2
Asλ111 σ

)
. (34)

If an uniaxial stress of amplitude σ is applied along the
[100] direction, we get:

f111 = f111 = f111 = f111

= f111 = f111 = f111 = f111 = 1
8

(35)

so that:
εμ
100 = 0. (36)

These results are reported in Figure 5 in the case of nickel
for which λ111 = −24 × 10−6 [8]. The value for As is
5×10−3 m3 J−1 (the same than for the iron single crystal).

The dissymmetry between the tension and compres-
sion behaviors can also be noticed:⎧⎨

⎩
lim(σ→+∞) εμ

111 = −1
3
λ111

lim(σ→−∞) εμ
111 = λ111

(37)
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⎧⎪⎨
⎪⎩

lim(σ→+∞) εμ
110 = −1

2
λ111

lim(σ→−∞) εμ
110 =

1
2
λ111.

(38)

3.2.3 Multiaxial loadings

As previously said, the proposed modeling allows to con-
sider more general and more complicated loadings.

The magnetostriction strain in a 〈100〉 direction is de-
fined, for any stress state, as:

εμ
100 = 0. (39)

The magnetostriction strain in a 〈111〉 direction is defined,
for any stress state, as:

εμ
111 =

2
3
λ111 (3f111 − f111 − f111 − f111)

=
2λ111

3S
[3 exp (Asλ111 (σ12 + σ13 + σ23))

−exp (Asλ111 (−σ12 − σ13 + σ23))

−exp (Asλ111 (−σ12 + σ13 − σ23))

−exp (Asλ111 (σ12 − σ13 − σ23))] .
(40)

We developed a fully analytical model of the effect of
– uniaxial and multiaxial – stress on the magnetostric-
tion strain of cubic single crystals. This modeling allows
a description of the ΔE effect consistent with the inde-
pendence of the elastic properties of materials on their
magnetization. The same principles can be applied to the
prediction of the behavior of polycrystals.

4 Extension to the behavior of polycrystals

The magnetostrictive behavior of a polycrystal is sup-
posed, as a first approximation, to be isotropic. The con-
trast of behavior along different directions, exhibited for
example in Figure 3 for the single crystal should not ap-
pear. The isotropic polycrystal can be seen as an aggre-
gate of single crystals with random orientation. It can be
defined as a single crystal for which all directions would
be easy directions. In one domain of such a single crystal,
the magnetostriction strain tensor can be written13 (in the
appropriate coordinate system):

εμ
m =

1
2

λm

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ , (41)

λm denotes, for the polycrystal, the maximum magne-
tostriction strain that can be reached during a mechanical
loading. The definition of its value requires a discussion.

13 In accordance with the usual isochoric hypothesis for the
magnetostriction strain [2].

4.1 Definition of λm

λm is the value of the maximum magnetostriction strain.
This parameter can be identified from experimental mea-
surements on unstrained specimen, but it can also be de-
fined from the value of the single crystal magnetostriction
coefficient λ100 or λ111. It is shown in [5] that the maxi-
mum magnetostriction strain λm of a polycrystal, in the
case when no magnetization rotation occurs can be writ-
ten in the form:

λm = 2
5λ100k

a for materials with

〈100〉 easy directions,

λm = 3
5λ111k

b for materials with

〈111〉 easy directions,

(42)

where ka and kb depend on the elastic properties of the
single crystal and on the hypotheses chosen for the de-
scription of the material. For instance, if we choose uni-
form stress (Reuss) hypotheses, we have ka = kb = 1, and
if we choose uniform strain (Voigt) hypotheses, we have
ka = 5μa/(2μa + 3μb) and kb = 5μb/(2μa + 3μb), μa and
μb being the cubic shear modulus of the single crystal. For
the sake of simplicity, we will chose ka = kb = 1 in further
numerical applications.

4.2 Multiaxial stress state

A general stress tensor is considered, with 6 independent
components (see Eq. (9)). We choose to work in the prin-
cipal coordinate system for the stress: in that particular
framework, the stress tensor is diagonal and its compo-
nents are called the principal stresses:

σ =

⎛
⎜⎝

σi 0 0

0 σii 0

0 0 σiii

⎞
⎟⎠ . (43)

The definition of the magnetostriction strain of the poly-
crystal then follows the same strategy used for single crys-
tals. Since a finite number of easy magnetization directions
has been replaced by an infinite number, the symbol sum
has to be replaced by an integral over the possible direc-
tions α.

The transformation matrix from the domain coordi-
nate system to the principal coordinate system is noted
P and defined by equation (44) where θ varies from 0 to
2π and ϕ from 0 to π

P =

⎛
⎜⎝

cos θ sin ϕ sin θ cos θ cosϕ

sin θ sin ϕ − cos θ sin θ sin ϕ

cosϕ 0 − sinϕ

⎞
⎟⎠ . (44)

The magnetostriction strain in a domain α(θ, ϕ) can be
expressed in the principal coordinate system according to
equation (45)

εμ
p = tP εμ

m P . (45)

31101-p6



L. Daniel and O. Hubert: An analytical model for the ΔE effect in magnetic materials

In such conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εμ
p11 =

λm

2
(3 cos2θ sin2ϕ − 1)

εμ
p22 =

λm

2
(3 sin2θ sin2ϕ − 1)

εμ
p33 =

λm

2
(3 cos2ϕ − 1)

εμ
p12 = εμ

21 =
3 λm

2
cos θ sin θ sin2ϕ

εμ
p13 = εμ

31 =
3 λm

2
cos θ cosϕ sin ϕ

εμ
p23 = εμ

32 =
3 λm

2
sin θ cosϕ sin ϕ.

(46)

The elastic energy in a domain α, defined by equation (47),
can be developed according to equation (48).

W el
α = −σ : εμ

p (47)

W el
α = − 1

2λm

[
σi

(
3 cos2θ sin2ϕ − 1

)
+σii

(
3 sin2θ sin2ϕ − 1

)
+σiii

(
3 cos2ϕ − 1

)]
.

(48)

Parameter S of equation (13) is now defined by equa-
tion (49)

S =
∫ 2π

0

∫ π

0

exp(−As W el
α ) sin ϕ dϕ dθ. (49)

The magnetostrictive response Eμ of the polycrystal can
be defined in a similar way to the one obtained in a direc-
tion 〈100〉 of a single crystal with 〈100〉 easy magnetization
directions (since all directions are easy axes)

Eμ =
∫

α

fα εμ
p dα (50)

with:
fα =

1
S

exp(−As W el
α ). (51)

The magnetostriction strain tensor components, defined
in the principal coordinate system, are then written:

Eμ
ij =

1
S

∫ 2π

0

∫ π

0

εμ
pij exp(−As W el

α ) sin ϕ dϕ dθ. (52)

In accordance with experimental observation, the pre-
dicted magnetostriction strain is isochoric:

Eμ
11 + Eμ

22 + Eμ
33 = 0. (53)

Moreover, we observe that the principal coordinate sys-
tem for the magnetostriction strain tensor is the principal
coordinate system for the stress tensor, so that:

Eμ =

⎛
⎝Eμ

11 0 0
0 Eμ

22 0
0 0 Eμ

33

⎞
⎠ =

⎛
⎝Eμ

i 0 0
0 Eμ

ii 0
0 0 Eμ

iii

⎞
⎠ . (54)

4.3 Uniaxial tension-compression

The case of uniaxial tension-compression14 of amplitude
σ brings significant simplifications. The elastic energy
(Eq. (48)) reduces to:

W el
α = −1

2
λmσ

(
3 cos2ϕ − 1

)
. (55)

Parameter S (Eq. (49)) is re-written:

S = 2π e(−
1
2Asλmσ)

∫ π

0

exp(
3
2
Asλmσcos2ϕ) sin ϕ dϕ.

(56)
The magnetostriction strain in the direction parallel to
the applied stress is then defined by equation (57)

Eμ
iii =

πλm

S
exp

(
−1

2
Asλmσ

)
I1 (57)

with:

I1 =
∫ π

0

(3 cos2ϕ−1) exp(
3
2
Asλmσcos2ϕ) sin ϕ dϕ. (58)

The calculation of the other terms of the tensor allows
to verify the following expression for the magnetostriction
strain tensor:

Eμ =
π λm I1

2 S
exp(

1
2
Asλmσ)

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (59)

5 Experimental characterization of ΔE effect

The measurement of ΔE effect usually consists in the
evaluation of the stress-strain response of a demagnetized
specimen (Fig. 1) thanks to a tensile-compressive machine.
The εμ component of the total deformation is then ex-
tracted according to equation (2). This procedure is nev-
ertheless very difficult to apply since amplitude of magne-
tostriction is most of the time much lower than the total
deformation ε. Polycrystalline iron is a classical example:
the amplitude of longitudinal magnetostriction is about
10−5; considering a Young’s modulus of about 200 GPa, a
2 MPa tensile stress produces the same elastic amplitude
of deformation than magnetostriction. When stress over-
comes 20 MPa, the deformation of magnetostriction only
accounts for 10% of the total deformation. This way of
measurement is consequently not accurate. Other meth-
ods can be used [9]. An alternative procedure, based on
the hypothesis of magnetic saturation of the magnetostric-
tion, is proposed in the next section.

5.1 Principle

The procedure is based on anhysteretic magnetostriction
measurements under different levels of applied stress i.e.
14 For example σi = σii = 0 and σiii = σ.
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Fig. 6. (Color online) Schematic view of the measured
deformation ε′ and associated domain structure; (a) zero stress;
(b) with σ applied stress; (c) shift of the σ applied stress curve
to get the same saturation value.

εμ(M, σ) with σ constant. Accurate measurements re-
quire first to proceed to an efficient demagnetization un-
der stress. This step leads to an initial deformation εi

(Eq. (60)) that is practically not possible to measure.

εi(0, σ) = εel(σ) + εμ(0, σ). (60)

The deformation is then arbitrarily put to zero. Next step
is to proceed to the anhysteretic magnetostriction mea-
surement. Measurement is now corresponding to ε′ given
by equation (61):

ε′(M, σ) = ε(M, σ) − εi(0, σ)
= εμ(M, σ) − εμ(0, σ).

(61)

The value of ε′(M = 0, σ) is artificially zero whatever the
stress level. The extraction of magnetostriction behavior
εμ(M, σ) requires consequently to evaluate εμ(0, σ).

Figure 6 gives a schematic view of ε′(M, σ) for σ = 0
(a) and σ �= 0 (b). A very simple 2D scheme of the do-
main configuration is associated. If we make the hypoth-
esis that the magnetization reaches Ms at high magnetic
field, the domain configurations and thus the values of
magnetostriction are strictly identical whatever the stress
level. The ultimate value ε′(Ms, 0) = εμ(Ms, 0) becomes

Fig. 7. (Color online) Apparatus for measurement of magne-
tostriction under applied stress – with articulated heads.

a reference value that all the ε′(M, σ) curves must reach.
We finally proceed to a shift S(σ) of the ε′(M, σ) curves
(Fig. 6c). S(σ) is intrinsically corresponding to the mag-
netostriction at zero applied field i.e. S(σ) = εμ(0, σ), that
is a direct observation of the ΔE effect. We note S(σ) =
εμ(σ). Considering several stress levels σ, Figure 6c is con-
sequently corresponding to the complete magnetostriction
behavior εμ(M, σ)15.

5.2 Experimental procedure

The benchmark for magneto-mechanical measurements is
based on a non-standard experimental frame [10]. It is
constituted of two face-to-face positioned ferrimagnetic
U-yokes (Fig. 7). Samples are placed between the two
yokes. Their shape and length depend on the nature of
the investigated material. In order to measure magne-
tostriction, samples have been instrumented with longi-
tudinal and transverse strain gages. A half Wheatstone
bridge configuration with temperature compensation has
been chosen for strain measurement (low-pass second or-
der Butterworth filtering). A primary winding is placed on
the specimen. B-coil and H-coil ensure the measurement
of magnetic quantities.

We restrict the experiment to reversible behavior
with usual methods (so-called anhysteretic measurement).

15 It is not rigorously “pure” magnetostriction because the
parasitic elastic deformation due to the magnetic forces still
remains (i.e. form effect). This deformation is sometimes of
same order of magnitude and has the same dynamic (frequency,
even function) than magnetostriction. A second correction pro-
cedure should be applied especially with sheet specimen. But,
because εµ(σ) is corresponding to a zero magnetization level,
the correction is not necessary for this figure.
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Fig. 8. (Color online) Influence of uniaxial stress on the
anhysteretic longitudinal magnetostrictive behavior of pure
iron [11].

The anhysteretic curves are measured point by point by
applying a sinusoidal magnetic field of mean value H , and
of exponentially decreasing amplitude.

Two solutions are possible to get uniaxial stress: the
first solution is to suspend loads to the specimen, which
is previously equipped with specific articulated heads
(Fig. 7)16. This technique creates a pure uniaxial stress
state and avoid vibrations, but compression is not pos-
sible; it is used for sheet format specimen (iron-silicon,
iron-cobalt). The second solution is to use a hydraulic ma-
chine. This solution leads to noisy deformation measure-
ments but enables compression. It is used for bulk mate-
rials (pure iron, Ni-Zn ferrite). The procedure detailed in
Section 5.1 is finally applied.

Figure 8 gives an example of measurement carried out
with the experimental set-up [11]. It shows the longitu-
dinal magnetostrictive behavior of pure iron under ten-
sile and compressive stress17. εμ(σ) is extracted from this
measurement and plotted in Figure 9 for longitudinal and
transverse directions.

Experimental results have been carried out with other
materials: they are compared to the previsions of the
model in the next section.

6 Comparison between experiments
and modeling

The ΔE effect measurement has been performed on four
different materials. Bulk specimens of pure iron and NiZn
ferrite (composition Ni0.48Zn0.52Fe2O4), and sheet spec-
imen of non-oriented 3%silicon-iron and 29%cobalt-iron
alloys have been tested. The magnetostriction coefficients
of the single crystals of these materials are reported in
Table 1. The variables ka and kb (Eq. (42)) have been ar-
bitrarily taken equal to 1, corresponding to uniform stress

16 The maximal load is about 50 kg leading to a maximal
stress from 16 MPa to 100 MPa depending on the section of
the specimen.
17 The specimen is a 10 mm diameter plain cylinder of iron;
form effect is negligible and so not withdrawn to the results.
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Fig. 9. (Color online) ΔE effect for pure iron – longitudinal
and transverse behaviors.

Table 1. Magnetostriction constants of the materials used
for experiments.

λ100 λ111 K1 (J m−3) Ref.

Pure iron 21 × 10−6 −21 × 10−6 42 700 [6,8]
Ni-Zn ferrite −26 × 10−6 −5 × 10−6 −1700 [12]
FeSi alloy 25 × 10−6 −5 × 10−6 38 000 [6,8]
FeCo alloy 100 × 10−6 10 × 10−6 35 000 [13]

Table 2. Modeling parameters.

As (m3/J) λm

Pure iron 5 × 10−3 8.4 × 10−6

Ni-Zn ferrite 3 × 10−2 −3.0 × 10−6

FeSi alloy 3 × 10−2 10 × 10−6

FeCo alloy 5 × 10−3 40 × 10−6

hypotheses. The data used for the modeling are given in
Table 2.

6.1 Bulk specimens

The results for pure iron and Ni-Zn bulk specimens are
respectively presented in Figures 10 and 11. Figure 10
exhibits a very good agreement between modeling and
experimental results. Some significant discrepancies are
observed for Ni-Zn ferrite. A higher value for λm would
be necessary in the modeling to get a better agreement.
Considering the elastic constants of the single crystal [12],
another mechanical hypothesis than uniform stress state
would not lead to a significant change of λm. The relatively
low value of K1 explains these discrepancies: indeed for
such a low magnetocrystalline anisotropy, the hypothesis
of no magnetization rotation under stress is not verified.
The maximum value for the magnetostriction strain can-
not be defined as simply as in equation (42). This results
points out a limitation of the proposed approach. In such
a case, where the behavior results from the combinaison
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Fig. 10. (Color online) ΔE effect for pure iron: longitudi-
nal and transverse magnetostriction strain as a function of the
applied stress σ, modeling (line) and experimental results.
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Fig. 11. (Color online) ΔE effect for Ni-Zn ferrite: longitu-
dinal and transverse magnetostriction strain as a function of
the applied stress σ, modeling (line) and experimental results.
Dashed lines: results obtained with a full multiscale model [12].

of domain wall motion and magnetization rotation mech-
anisms, the full multiscale model [5] should be used. The
corresponding results (presented in reference [12]) have
been added in Figure 11.

6.2 Sheet specimens

The results for iron-silicon and iron-cobalt sheet speci-
mens18 are respectively presented in Figures 12 and 13.

The agreement between modeling (plain lines) and ex-
perimental (points) results is good considering the longi-
18 In both cases, the experimental data have been collected
with a tensile stress applied in the direction TD perpendicular
to the rolling direction of the sheet.
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Fig. 12. (Color online) ΔE effect for an iron-silicon steel:
longitudinal and transverse magnetostriction strain as a func-
tion of the applied stress σ, modeling (line) and experimen-
tal (points) results. Plain line for isotropic strain and dot line
(transverse direction) for configuration energy effect. Dashed
lines: results obtained with a full multiscale model with con-
figuration energy effect [5,15,16].

Fig. 13. (Color online) ΔE effect for an iron-cobalt alloy:
longitudinal and transverse magnetostriction strain as a func-
tion of the applied stress σ, modeling (line) and experimen-
tal (points) results. Plain line for isotropic strain and dot line
(transverse direction) for configuration energy effect. Dashed
lines: results obtained with a full multiscale model with con-
figuration energy effect [5,15,16].

tudinal direction, but the comparison is not satisfactory
in the transverse direction. The explanation of these dis-
crepancies may be found in the initial distribution of the
magnetic domains in the material. Indeed the model is
designed for bulk materials so that the initial distribu-
tion of the domains is assumed to be random into a uni-
form distribution (every domain directions have the same
probability of existence). As a consequence, the behavior
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is isotropic and the transverse magnetostriction is equiv-
alent in any direction perpendicular to the longitudinal
direction. Considering an isochoric strain, it comes:

Eμ
Trans = −1

2
Eμ

Long. (62)

This hypothesis obviously does not apply to sheet speci-
men. For such shapes, demagnetizing phenomena lead to
a non-uniform distribution of domains [14,15]. This initial
configuration is such that the domains with magnetiza-
tion along the rolling direction of the sheet are in higher
proportion than the others19. As a consequence, the be-
havior is anisotropic. The simplifying hypotheses used do
not apply. However, the ΔE effect can be predicted us-
ing the full – numerical – multiscale model [5]. The initial
configuration is taken into account in the model using con-
figuration energy [15,16]. This procedure has been applied
to iron-silicon and iron-cobalt alloys. Results are plotted
in Figures 12 and 13 (dashed lines) showing a better agree-
ment with experimental results.

It appears that the magnetostriction strain in the di-
rection perpendicular to the sheet is close to zero (for
these materials). The transverse magnetostriction strain
satisfies the relation (63).

Eμ
Trans = −Eμ

Long. (63)

Using this result as an hypothesis for the analytical model,
the agreement between experimental and model data (dot
line in Fig. 13 and 12) becomes better.

7 Conclusion

A model for the ΔE effect in magnetic materials has
been proposed. This model is based on the description of
the physical mechanisms responsible for magneto-elastic
couplings at the single crystal scale. The proposed ana-
lytical approach does not include magnetization rotation
as a source of magnetostriction strain. It is limited to
material exhibiting high magneto-crystalline constants.
A specific procedure for the experimental characterization

19 This change (compared to the uniform distribution) de-
pends on the material composition, on the crystallographic
texture, on the dimensions and on the forming process of the
sheet.

of the ΔE effect has been proposed. Modeling and ex-
perimental results have been compared for bulk and sheet
polycrystalline specimen. The results on Ni-Zn ferrite have
allowed to illustrate the limitations and conditions of use
of the model. In the case of sheet samples, an initial do-
main configuration has to be accounted for. This model
provides a simple tool to describe the effect of stress on the
magnetostriction strain. It could be used in electrical en-
gineering to improve the macroscopic models for magneto-
elastic coupling, that often neglect the effect of stress on
magnetostriction.
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