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Abstract

Magnetic and mechanical behaviors are strongly coupled. But few models are able to describe magneto-mechanical

coupling effects. We propose a multiscale approach for the modeling of the reversible magneto-elastic behavior of

ferromagnetic materials. This approach stands between macroscopic phenomenological modeling and micromagnetic

simulations. We detail first the definition of the magneto-elastic behavior of a single crystal, deduced from energetic

considerations made at the scale of magnetic domains and hypotheses concerning the domains microstructure. This model is

then applied to the description of the behavior of polycrystalline media, through a multiscale approach. The heterogeneity of

stress and magnetic field is taken into account through a self-consistent localization–homogenization scheme, including

crystallographic texture data. Results are discussed and compared to experimental data from the literature.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Ferro- and ferrimagnetic materials are used to produce and to transform energy or build actuators. The
search for higher performance and lighter electrotechnical devices leads to a deeper need of predictive
dimensioning tools, concerning optimization of materials, structures and forming processes. Consequently,
advanced models are needed to describe the magnetic behavior. Especially, the accuracy of modeling has to be
improved to account for coupled magneto-mechanical phenomena. This coupling is characterized by the
influence of stress state on the magnetic susceptibility and by the magnetostriction1 (i.e. the spontaneous
deformation due to magnetization, Joule, 1847; Bozorth, 1951; Du Trémolet de Lacheisserie, 1993). These
phenomena are linked to the existence of a magnetic domains microstructure (Hubert and Schäfer, 1998).
Each magnetic domain is associated to a given saturation magnetization and magnetostriction strain.
Macroscopic magnetization process and magnetostriction are explained by a variation in volume of domains
e front matter r 2007 Elsevier Ltd. All rights reserved.
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submitted to a magnetic field or stress. A concomitant magnetization process consists in a rotation of
magnetization direction of the magnetic domains. A stress modifies the energetic equilibrium of domains
structure as well, bringing a change of their volume, and as a consequence a change of susceptibility. At the
macroscopic scale, the magnetostriction partly explains the noise emitted by electrical devices, and particularly
transformers. The effect of stress on the magnetic behavior is responsible for the decrease of rates in electrical
devices submitted to stress. The magnetic behavior cannot, therefore, be accurately determined unless the
mechanical fields are taken into account. The difficulty of such a determination is increased by the
multiaxiality of magnetic and mechanical loadings.

Up to now, two main approaches have been proposed to describe such coupling effects. On the one hand,
several phenomenological macroscopic models (introducing the stress as a parameter in classical macroscopic
models) have been proposed, extended from the Jiles–Atherton model (see for instance Sablik and Jiles, 1993),
from the Preisach model (for instance Appino et al., 1999 or Bernard and Ossart, 2004) or based on
thermodynamic arguments (for instance Hirsinger et al., 2000 or Azoum et al., 2004). The applicability of such
approaches is often limited to a short range of loadings, to isotropic materials, and the multiaxiality of stress
state is rarely accounted for. Moreover, these approaches do not allow the investigation of materials
properties optimization, since the effect of a change in composition or crystallographic texture cannot be
predicted. On the other hand, micromagnetic simulations allow the simulation of complex domain structures
(DeSimone et al., 2000). They are based on the minimization of the potential energy of the single crystal
modeled by a set of interacting magnetic moments, each of them representing a set of atoms. The number of
degrees of freedom and interactions is growing very quickly with the number of magnetic moments, so that
these simulations are always made for small size systems. Several authors have developed some magneto-
elastic simulations that take into account uniaxial or cubic crystalline symmetries (for example He, 1999;
DeSimone and James, 2002). This kind of strategy usually concerns 2D patterns and often leads to prohibitive
calculation times, still not reasonable today concerning polycrystalline media.

Micro–macro approaches have been successfully developed in many fields of physics during the past years to
deduce the overall behavior of heterogeneous materials from the behavior of their constituents. Concerning non-
linear behaviors, these approaches have been developed first in the framework of polycrystals plasticity (Hill,
1965; Berveiller and Zaoui, 1978). Applications to coupled phenomena have been proposed for shape memory or
ferroelectric polycrystals (see for instance Patoor et al., 2006; Lagoudas et al., 2006; Huber et al., 1999; Haug
et al., 2007). But few models have been addressed in the framework of magneto-elasticity. The development of
such approaches relies on two key points. The first one is the definition of transition scale rules, depending on the
microstructure of the studied material, and allowing to estimate the fluctuation of the local fields for a given
macroscopic loading. The second one is an appropriate description of the behavior of the constituents.

Our proposition is to use simplifying hypotheses allowing a fast estimation for the magneto-elastic behavior.
Several scales can be chosen to define this behavior, leading to a multiscale calculation strategy, remaining in
the framework of continuum mechanics. The first scale for which homogeneous magnetic and mechanical
state can be considered is the magnetic domains scale. The next scale is the grain scale for which the elastic
properties are homogeneous. We then define the polycrystalline representative volume element (RVE) scale.
The studied zone is then large enough to consider that the RVE behavior defines the average material behavior
and/or properties. It is not possible to define precisely this scale as its dimensions depend on the studied
material and/or on the studied properties.

The polycrystal is seen as a single crystals aggregate, with respect to a given orientation distribution
function (ODF), representative of the polycrystal texture. The proposed modeling considers homogeneous
magnetic field and strain state within the single crystal. These hypotheses are maintained in each grain of a
polycrystal. The fluctuations of magnetic field and stress within the polycrystal is not neglected since they
significantly affect the predicted value for the magnetostriction strain. The self-consistent approach
(Bruggeman, 1935; Hill, 1965), known to be suitable to polycrystals behavior (Bornert et al., 2007), will be
used. Hypotheses of homogeneity of stress and magnetic field will be nevertheless used in order to obtain faster
results in the framework of simplified approaches.

Hysteretic phenomena are not considered in this first approach. The proposed modeling is only relevant for
reversible magneto-elastic behavior, associated to anhysteretic magnetic field strengthening. Assumptions
hereafter have been developed for ferro- or ferrimagnetic materials with a cubic crystallographic symmetry.
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The paper is divided into three parts. The first one presents the single crystal constitutive law. The second
part is dedicated to the definition of polycrystalline media behavior, with the definition of scale transition
rules. In the last part, modeling results are compared to experimental data.

2. Single crystals

2.1. Energetic equilibrium

At the scale of a group of atoms, the magnetic equilibrium state is the result of the competition
between several energetic terms. The potential energy of a group of atoms can be written (Hubert and
Schäfer, 1998)

W ¼W ex þW an þWmag þWs, (1)

where W ex denotes the exchange energy; W an denotes the magneto-crystalline energy; Wmag denotes the
magneto-static energy; Ws denotes the elastic energy.

2.1.1. Exchange energy

The exchange energy is related to the ferromagnetic coupling effect between neighboring atoms, tending to
uniformize the magnetization in a volume element. It can be written

W ex ¼ Aðgrad~gÞ2, (2)

A is the exchange constant of the material, and ~g denotes the magnetization direction

~M ¼Ms~g (3)

Ms is the magnetization saturation value of the material.
Exchange energy is minimum when the spatial variations of the magnetization direction are minimum.

2.1.2. Magneto-crystalline energy

The magneto-crystalline energy tends to force the magnetization to be aligned along particular directions,
called easy axes. These directions are mostly connected to crystallographic structure. In the case of cubic
crystallographic symmetry, the magneto-crystalline energy can be written

W an ¼ K0 þ K1ðg21g
2
2 þ g22g

2
3 þ g23g

2
1Þ þ K2ðg21g

2
2g

2
3Þ (4)

½g1; g2; g3� are the direction cosines of~g. K0 is an arbitrary constant, K1 and K2 denote the magneto-crystalline
anisotropy constants of the material. Magneto-crystalline energy is minimum when ~g is an easy axis.

2.1.3. Magneto-static energy

The magneto-static energy can be written

Wmag ¼ �m0 ~H : ~M, (5)

~H and ~M are, respectively, the local magnetic field and magnetization. This term tends to align the
magnetization with the magnetic field. It is minimum when ~H ¼ k ~Hk~g.

2.1.4. Elastic energy

In the case of a linear elastic behavior, Hooke’s law defines a proportional relation between elastic strain ðeeÞ
and stress ðr). The elastic energy is then defined as

Ws ¼
1
2
ee : C

I : ee ¼ 1
2
r : C�1 : r (6)

CI is the material stiffness tensor, uniform within a single crystal.



ARTICLE IN PRESS
L. Daniel et al. / J. Mech. Phys. Solids 56 (2008) 1018–1042 1021
In magnetic materials, the magnetostriction strain2 em is a source of incompatibility, involved in the
definition of r and thus in the definition of Ws.

In the case of cubic crystallographic symmetry, the magnetostriction strain em can be described with three
parameters. Assuming that this strain is isochore (Du Trémolet de Lacheisserie, 1993), the number of parameters
is reduced to two. In the crystallographic frame (CF), the magnetostriction strain tensor can be written

em ¼
3

2

l100ðg21 �
1

3
Þ l111g1g2 l111g1g3

l111g1g2 l100ðg22 �
1

3
Þ l111g2g3

l111g1g3 l111g2g3 l100ðg23 �
1

3
Þ

0
BBBBBB@

1
CCCCCCA

CF

(7)

where l100 and l111 denote the magnetostrictive constants. l100 (resp. l111) is the magnetostriction strain along
the direction h1 0 0i (resp. h1 1 1i) of a single crystal when it is magnetized at saturation along this direction.

2.2. Definition of the magneto-elastic behavior

If we consider a volume element V , the total potential energy becomes

W ¼
1

V

Z
V

ðW ex þW an þWmag þWsÞdV . (8)

The resolution of a problem of magneto-elasticity involves the minimization of this potential energy for the
volume element. This point is the base of the so-called micro-magnetic approaches. The macroscopic
quantities (R, E, ~Mm, ~Hext) are defined by an averaging operation of the local quantities ðr; e; ~M ; ~HÞ over the
volume. Such an approach, involving a large number of degrees of freedom, appears to be difficult to
implement, particularly if the heterogeneity scale is much smaller than the volume of interest.

In the present case, the volume of interest is the single crystal. If a single crystal is seen as a domains
aggregate, the potential energy of a single crystal can be defined as the sum of its domains potential energies
and of a wall energy, related to the transition zone between magnetic domains

W sc ¼
1

V

Z
Vd

W a dV þ

Z
Vw

Ww dV

 !
(9)

Vd being the domains volume and Vw the magnetic walls volume ðVd þ Vw ¼ V Þ. However, the definition of
Ww, of the wall volume Vw, and of the boundary between domains and walls are quite difficult. Actually, the
formulation (9), although seducing, is practically very difficult to use, unless one gets back to a micromagnetic
formulation.

We propose a model that uses the uniformity of magnetization and stress in magnetic domains and neglects
the fast variations of exchange and magneto-crystalline energies in the domain walls, joining on that point the
‘‘no-exchange’’ formulation (James and Kinderlehrer, 1990; DeSimone, 1993). This model is simple enough to
be implemented in a polycrystalline modeling.

2.3. Energetic equilibrium of a magnetic domain a and related hypotheses

In a magnetic domain a, with magnetization direction ~ga ¼ ½g1; g2; g3�, spatial variations of magnetization
are inexistent, the exchange energy is consequently zero.

The magnetization being uniform in a domain, the magneto-crystalline energy is also uniform, and the
integration over the volume becomes easy. Eq. (4) remains unchanged

W a
an ¼ K0 þ K1ðg21g

2
2 þ g22g

2
3 þ g23g

2
1Þ þ K2ðg21g

2
2g

2
3Þ. (10)
2�m denotes the free magnetostriction strain, meaning the magnetostriction strain that would appear if the material was able to deform

without any incompatibility.
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The magnetic field being supposed uniform in a domain, the magneto-static energy is uniform too, and can be
written

W a
mag ¼ �m0 ~M

a: ~Ha, (11)

~Ha is the magnetic field at the domain scale. ~Ma is the magnetization in the domain, defined by Eq. (12)

~Ma ¼Ms~ga. (12)

A first simplification is related to the definition of the local magnetic field ~H. The magneto-static energy is
defined assuming that ~H is uniform within a single crystal (or grain) and noted ~HI (~Ha ¼ ~HI).

A domain is supposed to be a substructure of a zone for which elastic properties are uniform.
Magnetostriction strain is also uniform in the domain. We assume that the stress is uniform in a magnetic
domain. The elastic energy can then be written

W a
s ¼

1
2
ra:CI�1 : ra. (13)

A second assumption is related to the expression of the elastic energy. We choose an uniform strain hypothesis
within a single crystal, so that the elastic energy expression is simplified (see Appendix A), and can be written

W a
s ¼Wo

s � rI : eam, (14)

rI being the mean stress within the single crystal (i.e. the applied stress at the grain scale) and Wo
s a constant

over the single crystal. The expression obtained by neglecting the constant term is usually called the magneto-
elastic energy (Bozorth, 1951; Hubert and Schäfer, 1998)

W a
sm ¼ �rI : eam. (15)

The potential energy of each domain is then written, except for a constant

W a ¼ �m0 ~M
a: ~HI � rI : eam þ K1ðg21g

2
2 þ g22g

2
3 þ g23g

2
1Þ þ K2ðg21g

2
2g

2
3Þ. (16)

2.4. A semi-phenomenological modeling for single crystals

2.4.1. State variables

We consider a single crystal. We define domain families (a), each of them being associated to a particular—
initial—easy axis (~ga0).

The chosen state variables are defined for each family and can be divided into two sets:
�

3

The orientation of the magnetization in each domain family, defined by two usual spherical angles ya and da.

�
 The volumetric fraction f a of the a domain family in the single crystal.

2.4.2. State variables calculation

Magnetic field and stress tensor being known, the variables ya and da are calculated by minimization of the
domain potential energy W a

W aðya; daÞ ¼ minðW aÞ. (17)

Variables f a cannot be estimated by such a minimization because of the mean magnetic field approach. f a is
then obtained using a Boltzmann function,3 proposed by Buiron et al. (1999) following Chikazumi (1997)

f a
¼

expð�As:W
aÞP

aexpð�As:W
aÞ
, (18)
Statistical approach for the determination of a specific state depending on its energy compared to the energy of the other states.
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As is a parameter that introduces the ‘‘inertial’’ effects ignored by the modeling.4 Its value can be analytically
calculated (see paragraph 2.4.4 and Appendix B). f a satisfiesX

a

f a
¼ 1. (19)

2.4.3. Single crystal behavior

The mean magnetization over the single crystal is defined by

~MI ¼ h ~Mai ¼
X
a

f a ~Ma. (20)

Assuming homogeneous elastic properties for the single crystal, the magnetostriction strain can be defined the
same way

eI
m ¼ he

a
mi ¼

X
a

f aeam. (21)

2.4.4. Identification of As parameter

If the magnetization rotation mechanism is ignored, a simplified modeling can be derived (see Appendix B).
This modeling, applicable only for low applied magnetic fields allows to link the parameter As to the initial
slope of the anhysteretic magnetization curve w0. We find

As ¼
3w0

m0M
2
s

. (22)

This parameter is found to be independent of the magnetic field direction. Under this assumption, the only
adjustable parameter of the modeling is directly obtained from a single anhysteretic magnetization curve
(without mechanical loading).

3. Polycrystals

Let us consider a RVE of a polycrystalline material. Grains orientation in the polycrystal is given5 and the
whole properties of the single crystal are known. Depending on these properties and on some hypotheses
concerning the microstructure, we want to link the macroscopic response (mean magnetization ~Mm and
macroscopic strain E) of this RVE to the macroscopic loading (the applied magnetic field ~Hext and
macroscopic stress R). The determination of this constitutive law is based on a localization-homogenization
strategy. The generic principle of such a multiscale approach is illustrated on Fig. 1.

3.1. Localization scheme

3.1.1. Definition of the local stress

The aim of this step is to derive the local stress rI from the external loading, postulating a particular form
for the function g in relation (23)

rI ¼ gðR; ~HextÞ. (23)

The function g is deduced from a self-consistent approach. Each grain is considered as an inclusion in the
homogeneous medium equivalent to the polycrystal, so that the problem can be linked to the solution of the
Eshelby inclusion problem (Eshelby, 1957).

The magnetostriction strain eI
m is considered as a free strain. The Eshelby tensor SE is calculated6 following

Mura (1982). SE links the free strain (eI
m) in a region (the inclusion) of the infinite media to the total strain eI in
4Such as the magnetic walls effect, the effect of the non-uniformity of the exchange energy, of the magnetic field or of the stress tensor in

the single crystal.
5It can be either simulated or measured thanks to X-rays diffraction or electron back scattering diffraction (EBSD) measurements.
6For the applications considered in this paper inclusions are taken spherical, assuming an isotropic distribution of the grains.
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this region

eI ¼ SE: eI
m. (24)

Hill’s formula (Hill, 1965) is applied, giving the local stress rI (at the single crystal scale) as a function of the
applied stress R (at the VER scale), the total strain E and the grain total strain eI

rI ¼ Rþ C�: ðE � eI Þ. (25)

C� is the so-called Hill’s constraint tensor, defined according to the Eshelby solution for the inclusion problem

C� ¼ C: ðSE�1
� IÞ, (26)

C is the polycrystal stiffness tensor, and I the fourth order identity tensor.
Strains are then separated into elastic and magnetostrictive parts:

E ¼ Ee þ Em ¼ C�1:Rþ Em;

eI ¼ eI
e þ eI

m ¼ CI�1 : rI þ eI
m

8<
: (27)

leading to the relation

rI ¼ BI :Rþ L�inc: ðEm � eI
mÞ. (28)

The local stress is written as the sum of two terms:
�

7

ma
8

The first term depends on the macroscopic stress tensor R and on the stress concentration law. BI is the
stress concentration tensor in the purely elastic problem. It can be written

BI ¼ CI :AI : C�1 with AI ¼ ðCI
þ C�Þ�1: ðCþ C�Þ. (29)
�
 The second term is linked to the elastic incompatibilities due to the existence of the free strain eI
m in the grain,

and to the stiffness of the surrounding medium. Em is the macroscopic magnetostriction strain. L�inc is defined by

L�inc ¼ CI : ðCI
þ C�Þ�1:C�. (30)

The proposed expression for this incompatibility stress supposes that the overall behavior remains in the elastic
domain.7 Otherwise relaxation terms would have to be accounted for.8

A third term rI
res can be added in order to account for residual stresses associated to other incompatibility

phenomena. These incompatibilities can be linked to plasticity, thermal or transformation strain. Eq. (28)
This condition is verified for most of ferro and ferrimagnetic materials, for which magnetostriction magnitude is about 10�6–10�4, and

ximum elastic strain magnitude is about 10�3–10�2.

The approach would then join plasticity or phase transformation micro–macro modeling.
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becomes

rI ¼ BI :Rþ L�inc: ðEm � eI
mÞ þ rI

res (31)

with

1

V

Z
VER

rI
res dV ¼ hrI

resi ¼ O. (32)

It must be noticed that relation (28) (or (31)) is implicit, since eI
m and Em are functions of rI and R.
3.1.2. Definition of the local magnetic field

The aim of this step is to derive the local magnetic field ~HI from the external loading, postulating a given
form for the function h in relation (33)

~HI ¼ hðR; ~HextÞ. (33)

This equation is usually written (in electrotechnical engineering) in the form of relation (34)

~HI ¼ ~Hext þ ~HI
d, (34)

where the local perturbation of the macroscopic magnetic field is taken into account through the
demagnetizing field ~HI

d. As we must verify

1

V

Z
VER

~HI dV ¼ h~HIi ¼ ~Hext, (35)

we have

1

V

Z
VER

~HI
d dV ¼ h ~HI

di ¼
~0. (36)

Assuming that the mean values for the magnetization and the magnetic fields are sufficient to define the
magnetic state of a grain, the demagnetizing field is written

~HI
d ¼ Kdð ~M

m � ~MIÞ (37)

with ~Mm the mean magnetization in the material, ~MI the mean magnetization for the considered grain and Kd

a second order operator.
In the case of stress independent linear isotropic magnetic behavior, and spherical inclusions, the tensor Kd

can be replaced by a scalar value Nc (see Appendix C).

Nc ¼
1

3þ 2wm
; wm is the equivalent media susceptibility. (38)

Herein, as a first approximation, we choose to extend this relation to anisotropic non-linear magnetic
behavior. We use a variable value of Nc computed from the value of wm recalculated at each step of the
iterative scheme (secant definition)

wm ¼
k ~Mmk

k ~Hextk
. (39)

The localization law9 (Eq. (34)) is then written

~HI ¼ ~Hext þ
1

3þ 2wm
ð ~Mm � ~MIÞ. (40)
9The adopted modeling is similar to the secant approach used in the framework of micro–macro modeling of plasticity, and exhibits the

same limitations, particularly for high levels of non-linearity (Gilormini, 1995).
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3.2. Local behavior

Local behavior is defined according to Section 2. The local loading—applied to a grain—being known, the
local behavior law can be applied, and the grain response (magnetization and strain) deduced.

3.3. Homogenization

The last step in the micro–macro modeling is the homogenization step to go back to the macro-scale. We define:

~Mm ¼
1

V

Z
VER

~M dV ¼ h ~MIi;

E ¼
1

V

Z
VER

edV ¼ heI i:

8>>><
>>>:

(41)

As the scheme is self-consistent, an iterative procedure has to be built up. The calculation is then done until
convergence.

The resolution of a complete coupled magneto-elastic problem requires a numerical implementation of the
modeling, including discrete ODF data. An example is given on Section 4.2 in the case of isotropic polycrystalline
iron. Nevertheless, analytical solutions can be found in the case of isotropic polycrystals, using similar ideas. The
particular case of magnetic saturation, leading to an usual thermo-elastic problem, is treated in Appendix D.

4. Modeling results

4.1. Single crystals

We compare in this section the results of modeling to the experimental data obtained by Webster (1925a,b)
for pure iron single crystals.

Low fields measurements give the necessary data to identify the parameter As. The initial susceptibility of
the single crystal is approximatively estimated thanks to the h1 0 0i magnetization curve

w0expI2000 leading to As ¼ 1:6� 10�3 m3 J�1. (42)

This result is obviously approximative since it is based only on the behavior along the h1 0 0i axis.
Experimental data indicate that the initial susceptibility in other directions is a little lower, in disaccordance
with our initial hypotheses. The material constants used are defined in Table 1.

Fig. 2(a) (resp. 2(b)) shows the magnetization (resp. the magnetostriction strain) measured in the direction
parallel to the magnetic field, when magnetic field is applied along a h1 0 0i, h1 1 0i or h1 1 1i axis of the single
crystal. We observe a very good agreement between numerical and experimental results, both for magnetic and
magnetostrictive behaviors. Strong non-linearity and anisotropy are well reproduced.

4.2. Polycrystals

In the case of polycrystals, the choice of a discrete modeling seems quite natural as the texture data (ODF)
are often available under the form of discrete data.
Table 1

Pure iron single crystal characteristics—bibliographic data

Constant Value Reference

Ms 1:71� 106 A=m Bozorth (1951), Cullity (1972), Jiles (1991)

(K1;K2) ð42:7; 15ÞkJ=m3 Bozorth (1951)

ðl100; l111Þ ð21;�21Þ10�6 Cullity (1972), Jiles (1991)

ðC11;C12;C44Þ (238;142;232)GPa McClintock and Argon (1966)
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Fig. 2. Pure iron single crystal behaviour. Experimental data (Webster, 1925a,b) (line) and numerical results (dashed line): (a)

magnetization curve; (b) magnetostrictive curve.
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Modeling results are illustrated in the case of isotropic pure iron polycrystal. The material parameters used
are listed in Table 1. They are relative to the single crystal, except As. The experimental results of Kuruzar and
Cullity (1971) allow to define the parameter As in the case of iron: As ¼ 2� 10�3 m3 J�1.

The first possible way to describe the crystallographic orientation distribution function is to choose of a
random orientation for each grain. This choice leads to a great uncertainty on the results obtained for the
magnetostriction strain as it is illustrated in Fig. 3.10

For a number of 100 orientations, the obtained value of the saturation magnetostriction strain lies in
a wide band—150% around the theoretical value. This dispersion (defined with a six standard deviation
width) is very slowly decreasing when increasing the number of orientations. A 1000 orientations
distribution function does not allow to define the magnetostriction in a band thinner than 50% around the
theoretical value. The mean value over the 200 random distribution functions leads approximatively
to the correct value for the saturation strain, whatever the—reasonable—number of orientations chosen.
A solution to get precise results would be to define a great number of random distribution functions, and
to define the mean value for the obtained results. This solution appears to be expensive in terms of
computation time.

Another choice, already used by Buiron (2000), is to build a regular zoning in the space of possible
orientations. Each crystal is defined by three Euler angles (j1, c, j2) following Bunge notation. Each angle
takes values regularly distributed in their variation domain, following Table 2.

The number of values taken in each space domain gives the precision of the texture isotropy. Limitation is
still linked to the number of orientations which has to be low in order to get reasonable computation times.
One possible ODF is made of 546 different orientations. The corresponding poles figures are given in Fig. 4.

This regular distribution exhibits a weak but obvious isotropic transverse symmetry. As shown in Fig. 3, the
Reuss magnetostriction saturation strain is a good indicator of anisotropy for a given texture. It has been
calculated for the 546 orientations texture, considering a great number (2000) of random directions of the
magnetic field. The obtained mean value is �4:18� 10�6, which is very near from the theoretical value
(�4:20� 10�6). Standard deviation reaches S ¼ 6:8� 10�8, so that the dispersion reported in Fig. 3 is
associated to an error bar of �0:05. This dispersion corresponds to a number of random orientations more
than 5000. As a conclusion, the constructed data file leads to quasi-isotropic behavior and will be kept to
describe isotropic materials.

The multiscale approach presented in Section 3 has been applied using this ‘‘isotropic’’ texture data, and the
iron single crystal characteristics (Table 1).
10The sensibility of the results to the texture data is highly dependent on the contrast between the constants l100 and l111.
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Table 2

Values chosen for the Euler angle for the ‘‘isotropic’’ texture

Variable Domain Number of values

j1 ½0; 2p� 13

cosc ½0; 1� 7

j2 ½0; 2p� 6

<100> poles <110> poles <111> poles

x

y

z

Fig. 4. Pole figures for the ‘‘isotropic’’ polycrystal obtained by regular zoning of the crystallographic orientations space (stereographic

projection).
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Fig. 3. Dispersion obtained—for 200 random orientation distribution functions—on the Reuss estimate value for the saturation

magnetostriction strain, depending on the number of orientations considered for this distribution function.
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4.2.1. Elastic behavior

Self-consistent and Voigt estimates for the shear modulus associated to this (discrete) virtual material have
been calculated:

meffSC ’ 82:1GPa and meffV ’ 88:8GPa. (43)

The calculation of the corresponding theoretical values is presented in Appendix D. If no more significant
figure is needed, the results given by the discrete approach are exactly the same than the analytical ones
(Table D.1). From that observation, we can conclude that the 546 orientations distribution allows an accurate
description of the elastic behavior of an isotropic polycrystal.
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Fig. 5. Effect of uniaxial stress on the magnetization curve: (a) numerical results; (b) experimental results (Kuruzar and Cullity, 1971).
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4.2.2. Saturation magnetostriction strain

The saturation magnetostriction strain is obtained using a very high applied magnetic field along the ~z
axis.11 Self-consistent and Reuss estimates have been calculated

Ek546mSC
¼ �8:95� 10�6 and Ek546mR

¼ �4:41� 10�6. (44)

These results are close to the analytical ones presented in Table D.2, but the agreement is less accurate than for
elastic properties: magnetostrictive properties of polycrystals are much more texture dependent than elastic
properties.

4.2.3. Magnetic behavior

The multiscale modeling allows to predict both the magnetic and magnetostrictive behaviors of the material
for different values of the external field and stress. In this case, no analytical solution are available, since linear
behavior and field homogeneity assumptions cannot be made anymore. Results obtained for the anhysteretic
magnetization curves are shown in Fig. 5(a) for several levels of uniaxial applied stress. Fig. 5(b) shows
corresponding experimental results obtained by Kuruzar and Cullity (1971) for pure polycrystalline iron (see
also Cullity, 1972).

Comparison between experimental and numerical results shows that the multiscale model seems to describe
correctly the effect of an applied stress. For low levels of magnetic field, a tensile stress increases the magnetic
susceptibility whereas a compression decreases it, in a stronger way. This effect is inversed for higher levels of
the applied magnetic field (Villari reversal), and the modeling reproduces it. The crossover between the
magnetization curves for different stress levels is usually explained by an inversion of the evolution of the
magnetostriction strain, introducing a change in the sense of variation for the magneto-elastic energy. This
point is directly related to the magnetization rotation mechanism.

Nevertheless, the modeling tends to overestimate the magnetic behavior, and the crossover point between
the different magnetization curves is obtained for higher magnetic field levels. However, the quantitative
comparison is hazardous, since the results of Kuruzar and Cullity (1971) are first magnetization curves
(meaning hysteretic measurements). Moreover the material used by Kuruzar and Cullity (1971) is supposed to
be isotropic, but the grain orientation distribution is actually unknown.

4.2.4. Magnetostrictive behavior

Experimental observations (Fig. 6(b)) show that the magnetostriction strain first increases with the applied
field and then decreases until a saturation point is reached. The effect of the magnetic field on the strain is
11~z is the direction normal to the plane of poles figures.
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correctly reproduced by the modeling12 (Fig. 6(a)), qualitatively concerning the general level, and
quantitatively concerning the slopes of the curves. The effect of uniaxial stress on the strain level is correctly
reproduced, even if the observed amplitude for the strain variations is higher than the predicted one.

5. Conclusion

In this paper, a model for the reversible magneto-mechanical behavior of magnetic materials, accounting for
3D magnetization and multiaxial stress state has been presented.

The multiscale model can be described as a simplified micro-magnetic model. Several scales are chosen to
define the magneto-elastic behavior, leading to a multiscale calculation strategy. The first scale is the magnetic
domains scale, at which the magnetization can be considered as homogeneous. The next scale is the single
crystal scale where elastic properties are homogeneous. The last scale is the RVE scale, which is large enough
to define the average material behavior and properties. Calculation of whole magneto-elastic behavior requires
the use of a single crystal modeling.

Potential energy is written at domain scale considering three energetic terms: magnetostatic energy,
magnetocrystalline energy and elastic energy. The internal variables are volumetric fraction and magnetization
orientation of each magnetic domain family: it means 18 internal variables for crystals with h1 0 0i easy
directions and 24 for crystal with h1 1 1i easy directions. Each internal variable is calculated thanks to a two
steps procedure: energetic minimization for orientations calculation and explicit Boltzmann formulation for
the calculation of volumetric fractions. Single crystal magnetization and magnetostriction are calculated
thanks to averaging operations over the domains.

Specific localization and homogenization procedures from RVE to grain scale are nevertheless required for
local magnetic and mechanical fields calculation. Secant approach is used for magnetic behavior, which is
strongly non-linear; elastic behavior remains linear and convergence is easily reached.

The multiscale model is able to predict: (1) magnetic behavior; (2) elastic behavior; (3) influence of
multiaxial stress state on magnetization; (4) magnetostrictive behavior; (5) influence of multiaxial stress state
on the magnetostrictive behavior; isotropic material as well as strongly textured material (Hubert et al., 2003)
can be considered. Comparisons to experimental data obtained from iron-silicon sheets (Daniel et al., 2003),
or isotropic ferrimagnetic NiZn ferrite (Vieille et al., 2004; Daniel et al., 2007) are conclusive.

The main shortcomings of the model are first that magnetic and mechanical fields are considered
homogeneous within a single crystal; second that domain walls are not taken into account (domain walls lead
12For which the reference strain is put to zero at zero magnetic field, whatever the stress level. It is imposed by the presentation of the

experimental data.
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to an increase of energy due to exchange energy contribution). A third important limitation is that the domain
configuration is only seen through volumetric fractions, which is insufficient when considering the importance
of the domains distribution on the local demagnetizing fields. Finally, surface effect has to be considered when
the grain size is comparable to the thickness of material (Hubert et al., 2003; Daniel et al., 2004).

Future developments will consist in introducing residual stresses effects such as plasticity or thermal
stresses, and dynamic and dissipative phenomena.

Appendix A

A.1. Definition of the elastic energy

The elastic energy for a domain is written

Ws ¼
1
2
eae :C

I : eae ¼
1
2
ra:CI�1 : ra. (A.1)

Several cases can be considered:
�
 If the stress is supposed uniform over the grain, ra ¼ rI , and then

W a
s ¼

1
2
rI :CI�1 : rI . (A.2)

This term is uniform over a single crystal, no magneto-elastic interaction appears.

�
 If the strain is supposed uniform over the grain, ea ¼ eI , and then

W a
s ¼

1
2
eae : C

I : eae

¼ 1
2
ðea � eamÞ:C

I : ðea � eamÞ

¼ 1
2
ea:CI : ea þ 1

2
eam:C

I : eam � eam:C
I : ea

¼ 1
2
eI :CI : eI þ 1

2
eam:C

I : eam � eam:C
I : ðeI

m þ eI
eÞ

¼ 1
2
eI :CI : eI þ 1

2
eam:C

I : eam � eam:C
I : eI

m � rI : eam. ðA:3Þ

A magneto-elastic interaction appears. If we neglect the second order terms (considering that CI : eam and CI : eI
m

are much smaller than rI ), we get the usual magneto-elastic interaction term (Hubert and Schäfer, 1998)

W a
s ¼Wo

s � rI : eam, (A.4)

Wo
s being a constant over the grain, whatever the magnetization state

Wo
s ¼

1
2
eI : CI : eI . (A.5)
�
 Hill’s approach can also be used (Hill, 1965) to treat an intermediate situation. Hill’s formula is applied,
giving the local stress ra as a function of the applied stress rI (at the single crystal scale), the single crystal
total strain eI and the domain total strain ea

ra ¼ rI þ C�: ðeI � eaÞ. (A.6)

C� is the so-called Hill’s constraint tensor, defined after the Eshelby solution for the inclusion problem
(Eshelby, 1957)

C� ¼ CI : ðSE�1
� IÞ. (A.7)

SE is the so-called Eshelby tensor, and I the fourth order identity tensor. The strain is then separated into
elastic and magnetostrictive parts

eI ¼ eI
e þ eI

m ¼ CI�1 : rI þ eI
m;

ea ¼ eae þ eam ¼ CI�1 : ra þ eam

8<
: (A.8)
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leading to the relation

ra ¼ rI þ CI : ðI� SE
Þ: ðeI

m � eamÞ. (A.9)

The elastic energy can now be written

W a
s ¼

1
2
ra:CI�1 : ra

¼ 1
2
rI :CI�1 : rI þ 1

2
ðeI

m � eamÞ:C
I : ðI� SE

Þ: ðeI
m � eamÞ þ rI : ðI� SE

Þ: ðeI
m � eamÞ

¼Wo
s � rI : ðI� SE

Þ: eam þ
1
2
eam:C

I : ðI� SE
Þ: eam � eI

m:C
I : ðI� SE

Þ: eam. ðA:10Þ

If SE is supposed constant, Wo
s is a constant over the grain, whatever the magnetization state

Wo
s ¼

1
2
rI :CI�1 : rI þ 1

2
eI
m:C

I : ðI� SE
Þ: eI

m þ rI : ðI� SE
Þ: eI

m. (A.11)

Only the non-uniform part of W a
s plays a role in the energetic equilibrium. The latter assumptions leads

to intermediate estimates, but is associated to more complicated calculations (to get the Eshelby tensor).

Appendix B. A simplified approach for the identification of As parameter

B.1. Single crystal

B.1.1. A simplified approach

When the description of the magnetic behavior is restricted to low fields and stress states, the rotation
mechanism is usually neglected. A way to define the validity range of such an hypothesis is to consider the so-
called ‘‘anisotropy’’ field (Chikazumi, 1997). The anisotropy magnetic and stress fields are defined by Eq. (B.1)

HK ¼
K1

m0Ms
and sK ¼

K1

lS

. (B.1)

The rotation mechanism can be neglected until magnetic field or stress levels stand far from the anisotropy
fields.13

Under these conditions, the potential energy of a domain can be written

W a ¼ �m0 ~M
a: ~HI. (B.2)

The volumetric fraction of each domain family is still defined by Eq. (18). We note, for further simplifications

~Ma ¼Ms~ga;

H ¼ k ~HIk;

S ¼
P
a
expð�As:W

aÞ;

K ¼ Asm0HMs:

8>>>>><
>>>>>:

(B.3)

In the crystallographic frame, using spherical coordinates for the magnetic field ( ~HI ¼ H½sinj cos y;
sinj sin y; cosj�), the potential energy of the domain families can be explicitly written, and S is deduced:

S ¼ 2ðcoshðK sinj cos yÞ þ coshðK sinj sin yÞ þ coshðK cosjÞÞ. (B.4)

The single crystal magnetization is given by

~MI ¼
2Ms

S

sinhðK sinj cos yÞ;

sinhðK sinj sin yÞ;

sinhðK cosjÞ:

������� (B.5)
13HK (resp. sK ) corresponds to a situation when the magnetic energy (resp. the elastic energy) totally compensate the magneto-

crystalline energy. In the case of iron HK ’ 20 kA=m and sK ’ 2GPa. In the case of nickel HK ’ 5:5 kA=m and sK ’ 73MPa.
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The single crystal magnetostriction can also be written

eI
m ¼

l100
S

2 coshðK sinj cos yÞ 0 0

�ðcoshðK sinj sin yÞ þ coshðK cosjÞÞ

0 2 coshðK sinj sin yÞ 0

�ðcoshðK sinj cos yÞ þ coshðK cosjÞÞ

0 0 2 coshðK cosjÞ

�ðcoshðK sinj cos yÞ þ coshðK sinj sin yÞÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
.

(B.6)

These relations can be considered as a simplified modeling for the magnetization and magnetostriction of a
single crystal as a function of the applied magnetic field. This modeling is anisotropic, as coordinates y and j
are involved. Its validity area is however very tiny as it does not account for rotation mechanisms nor effect of
an applied stress.

Experimental data obtained by Webster (1925a) for pure iron are reported in Fig. B.1 and compared to
modeling results. Since the modeling does not account for the out of easy directions rotation mechanism, the
simplified model will not be able to predict a saturation state if the applied field is oriented along a h1 1 0i or
h1 1 1i direction, or more generally in a direction that is not an easy magnetization direction.

B.1.2. Initial susceptibility definition

The assumptions made in the previous paragraph do not allow to use this modeling for high magnetic fields.
But interesting informations can be obtained in the vicinity of a null applied field. We can observe the
evolution of the magnetization in the vicinity of zero by calculating its derivative with H. After calculation, we
obtain

q ~MI

qH

�����
H¼0

¼
m0AsM

2
s

3

~H

H
. (B.7)

Near the origin, the magnetization rises and keeps its direction parallel to the applied magnetic field. The
material initial susceptibility, defined as the slope at the origin of the magnetization curve, can thus be written

w0 ¼ 1
3
Asm0M

2
s . (B.8)

The constant As can therefore be identified using a single magnetization curve of the crystal

As ¼
3w0

m0M
2
s

. (B.9)
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Fig. B.1. Simplified modeling for the iron single crystal behavior: experimental data (Webser, 1925a,b) (lines) and numerical results (dots):

(a) magnetization; (b) magnetostriction.
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The proposed simplified modeling is isotropic near the origin, as the predicted initial susceptibility is the same
for every direction of the single crystal, and the predicted magnetization is parallel to the applied magnetic
field. The anisotropic character of the behavior only appears for higher magnetic fields.

B.2. Polycrystals

B.2.1. A simplified approach

Let us consider an—ideal—unstressed bulk isotropic ferromagnetic material. The polycrystal micro-
structure is seen as an assembly of magnetic domains. By opposition to the single crystal, all the possible
orientations in space are considered equiprobable, and the domains are randomly distributed.
The macroscopic behavior is then isotropic.

We will estimate the polycrystal behavior by considering that a polycrystal is a single crystal for which all
space directions are easy magnetization directions. For each domain a, we can write

~Ma ¼Ms~g a. (B.10)

The macroscopic magnetization is written

~M ¼
1

V

Z
V

~Ma dV ¼Ms

Z
a

f a~g a da. (B.11)

Using the same notations and simplifications than in Section B.1, we define

f a
¼

1

S
expðK cosjÞ (B.12)

with

S ¼

Z
a
expð�AsW

aÞda ¼
Z
a
expðAsm0Ms~g

a: ~HÞda. (B.13)

If the magnetic field is aligned with the ~z direction (~H ¼ H½0; 0; 1�), we get

S ¼
4p sinhK

K
(B.14)

so that

~M ¼Ms
K coshðKÞ � sinhðKÞ

K sinhðKÞ
~z. (B.15)

B.2.2. Initial susceptibility definition

This macroscopic modeling does not take into account the magnetization rotation mechanism, and thus, its
validity domain is limited to the low applied fields area. Furthermore, only unstressed material has been
considered. An interesting quantity to be studied is the initial susceptibility w0

w0 ¼
qMz

qH

����
H¼0

. (B.16)

We get

qMz

qH
¼ Asm0M2

s

sinh2ðKÞ � K2

K2sinh2ðKÞ
(B.17)

leading to, for K ¼ 0

w0 ¼ 1
3
Asm0M

2
s . (B.18)

We obtain for a polycrystal, the same definition for w0 as in the case of a single crystal. This point results from
the fact that, in the simplified approach, the polycrystal is seen as a single crystal with an infinity of easy
magnetization directions (all directions of space being easy magnetization directions). A way to identify the
value for As is to get the initial slope of the macroscopic anhysteretic magnetization curve, and to deduce the
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value of As from it

As ¼
3w0

m0M
2
s

. (B.19)

B.3. Simplified modeling for the anhysteretic magnetostriction curve

As for the magnetization curve, it is possible to define a simplified modeling for the magnetostriction curve.
This approach neglects the magnetization rotation phenomenon, so that the extreme value for
magnetostriction is identical to its saturation value.

The definition of the volumetric fractions given by Eq. (B.12) is still correct. The single crystal
magnetostriction strain can be written, considering that the stress is uniformly zero within the material:

Em ¼

Z
a

f aea0m da. (B.20)

The definition of ea0m has to be specified. This definition is different from the usual definition
of the magnetostriction strain in a domain (given in Eq. (D.9)) in order to account for the fact that
crystallographic data has been totally neglected in this simplified modeling. ea0m must satisfy the two following
properties:
�
 When the applied field is zero, the macroscopic magnetostriction strain is zero.

�
 When saturation is reached, Em reaches a maximum value Emmax

(that can be taken from Appendix D).

Considering the saturation state, for which the volumetric fraction of a domain—the one whose
magnetization is parallel to the applied field—becomes 1, and the others become zero, we get

ea0m ¼ Emmax
. (B.21)

As it is shown in Appendix D, this value can be written

ea0m ¼
2

5
l100ka

1 0 0

0 �
1

2
0

0 0 �
1

2

0
BBBB@

1
CCCCA. (B.22)

This strain tensor, initially written in the macroscopic frame, becomes the strain tensor of each domain family,
in their own local frame.

The magnetostriction strain component Emzz
, parallel to the magnetic field can then be written

Emzz
¼

Z
a

f a
ð
t~zea0m~zÞda. (B.23)

Using the definition of f a and ea0m , we get

Emzz ¼

Z 2p

0

Z p

0

2l100ka

5S
expðK cosjÞ 1�

3

2
sin2j

� �
sinjdjdy (B.24)

leading to, after calculation

Emzz
¼

2

5
l100ka 1�

3 coshðKÞ

K sinhðKÞ
þ

3

K2

� �
. (B.25)

As shown in Appendix D, several estimates can be chosen to calculate the value of ka. For instance, the self-
consistent estimate can be used. In the case of iron

2
5
l100ka

¼ 6:13� 10�6. (B.26)
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Appendix C. Determination of the magnetic field localization operator

Relations (37) and (38) defining the localization law for the magnetic field are derived from the solution of a
magnetostatic problem for an inclusion.

We consider a spherical isotropic magnetic region embedded in an infinite isotropic magnetic medium
(Fig. C.1). This medium is submitted to an uniform (at the boundary) magnetic field ~H1 ¼ H1~x.

The behavior law for the spherical region (of radius R) is written

~MI ¼ wI ~HI. (C.1)

The behavior law for the infinite medium is written

~Mo ¼ wo ~Ho. (C.2)

Without any current density, the Maxwell equations can be written

div ~B ¼ 0; where ~B denotes the magnetic induction;

~rot ~H ¼~0; where ~H denotes the magnetic field:

(
(C.3)

Under these conditions, the magnetic field can be derived from a scalar potential:

~H ¼ � ~gradj. (C.4)

Applying the isotropic behavior law (~B ¼ m~H) leads to the Poisson equation for the potential:

Dj ¼ 0. (C.5)

The solutions for the potential j can be written

jI ¼ �HI r cos y; inside the sphere;

jo ¼ �H1r 1�
k

r3

� �
cos y; outside the sphere;

8><
>: (C.6)

H1 being the value for the magnetic field very far from the inclusion. The magnetic field can then be written,
following Eq. (C.4):
�
 Inside the sphere:

~HI ¼ HI~x. (C.7)
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r
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 χ'
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Fig. C.1. Schematic representation of the inclusion problem.
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�
 Outside the sphere:

~Ho ¼ H1 1þ
k

r3
ð3 cos2y� 1Þ

� �
~xþ

3k

r3
cos y sin y~y

� �
. (C.8)
The boundary conditions at the interface of the inclusion give (~n is the unit vector normal to the sphere
surface):

(a) For y ¼ p=2 and r ¼ R:

½~H� ^~n ¼ 0 ) HI ¼ H1 1�
k

R3

� �
, (C.9)

where the symbol ½ ~H� denotes the jump of ~H through the surface (½ ~H� ¼ ~Hext � ~H int).
From Eq. (C.9) we can deduce

k ¼ 1�
HI

H1

� �
R3. (C.10)

(b) For y ¼ 0 and r ¼ R

½~B�:~n ¼ ½~H þ ~M�:~x ¼ 0 ) MI þHI ¼Moð0;RÞ þHoð0;RÞ

) MI þHI ¼ ðwo þ 1ÞH1 1þ
2k

R3

� �
. ðC:11Þ

Replacing the value of k in Eq. (C.11) leads to

MI þHI ¼ ðwo þ 1ÞH1 3�
2HI

H1

� �
(C.12)

that can also be written:

MI þ 3HI þ 2woHI ¼ 2woH1 þM1 þ 3H1 (C.13)

finally leading to the expression

HI �H1 ¼
1

3þ 2wo
ðM1 �MIÞ. (C.14)

As both magnetization and magnetic fields appearing in Eq. (C.14) are parallel to the direction ~x, this relation
can be written in a vectorial way

~HI � ~H1 ¼
1

3þ 2wo
ð ~M1 � ~MIÞ. (C.15)

This relation justifies the choice made for relation (37), and the particular value of Nc in Eq. (38).

Appendix D. Magnetic saturation for isotropic polycrystal

The case of infinite isotropic polycrystal is interesting because it allows to obtain analytical results to the
homogenization problem when magnetic saturation is reached. Such a configuration can help to define the
parameters sensibility of the model.

The considered material is an isotropic polycrystal. Each grain exhibits a cubic crystalline symmetry. All
crystallographic orientations are equiprobable, randomly distributed in the material, and the grains are
equiaxial, so that the macroscopic behavior is isotropic.

D.1. Elastic behavior

The determination of the effective stiffness tensor of an isotropic polycrystal is a classical problem (see for
example Bornert et al., 2007) rapidly summarized hereafter. Isotropic stiffness tensor is defined by two
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constants: the shear modulus m and the compressibility modulus k are often chosen. The stiffness tensor is then
written

C ¼ 2mKþ 3kJ. (D.1)

The stiffness tensor of a cubic single crystal is written using three constants

CI
¼ 2mI

aK
a þ 2mI

bK
b þ 3kIJ. (D.2)

The base tensors are defined as

Jijkl ¼
1

3
dijdkl ; Pijkl ¼ dijdkldik,

Ka ¼ P� J; Kb ¼ I� P,

K ¼ Ka þKb ¼ I� J. ðD:3Þ

Several hypotheses can be made to determinate the polycrystal effective elastic properties.
Voigt and Reuss hypotheses (respectively, uniform strain and uniform stress within the material)

leads to

mV ¼
2mI

a þ 3mI
b

5
;

mR ¼
5mI

am
I
b

3mI
a þ 2mI

b

:

8>>><
>>>:

(D.4)

We can also calculate the Hashin and Shtrikman bounds

mHSþ ¼
mI

bð3kI
ð16mI

a þ 9mI
bÞ þ 4mI

bð19m
I
a þ 6mI

bÞÞ

mI
bð57kI

þ 64mI
bÞ þ 18mI

aðk
I
þ 2mI

bÞ
;

mHS� ¼
mI

að3kI
ð6mI

a þ 19mI
bÞ þ 4mI

að4m
I
a þ 21mI

bÞÞ

mI
að63kI

þ 76mI
aÞ þ 12mI

bðk
I
þ 2mI

aÞ
:

8>>>><
>>>>:

(D.5)

The self-consistent estimates can also be obtained, verifying the following third-order polynomial equation:

8mSC
3
þ ð9kI

þ 4mI
aÞm

SC2 � ð12mI
am

I
b þ 3kImI

bÞm
SC � 6kImI

am
I
b ¼ 0. (D.6)

In the case of iron

mI
a ¼ 48GPa; mI

b ¼ 116GPa; and kI
¼ 174GPa (D.7)

leading to the results presented in Table D.1.
All these estimates leads to the same compressibility modulus for the polycrystal

kV
¼ kR

¼ kHSþ
¼ kHS�

¼ kSC
¼ kI . (D.8)

Fig. D.1 shows the sensibility of the result to the single crystal anisotropy.
As expected, the more anisotropic the single crystal is, the more different the estimate becomes. They

are of course equal when the single crystal is isotropic. In the case of iron, all these estimates are still quite
similar.
D.2. Saturation magnetostriction strain

The magnetic saturation state enables to calculate an analytical form for the macroscopic strain. The
material being magnetized at saturation, the magnetization in the material is uniformly aligned along the
external field direction, and its norm is Ms. Under these conditions the magnetostriction strain in each grain is
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Fig. D.1. Several estimates for the shear modulus of an isotropic polycrystal depending on the single crystal anisotropy—Voigt (V), Reuss

(R), Hashin and Shtrikman (HSþ and HS�) and self-consistent (SC) estimates.

Table D.1

Several estimates for the shear modulus of an isotropic iron polycrystal

Reuss HS� Self-consistent HSþ Voigt

meff 74.0GPa 80.4GPa 82.1GPa 83.1GPa 88.8GPa
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uniform and is written, in the crystallographic frame

eI
m ¼

3

2

l100ðg21 �
1

3
Þ l111g1g2 l111g1g3

l111g1g2 l100ðg22 �
1

3
Þ l111g2g3

l111g1g3 l111g2g3 l100ðg23 �
1

3
Þ

0
BBBBBB@

1
CCCCCCA

CF

. (D.9)

From a macroscopic point of view, the magnetostriction strain can be obtained by the resolution of a thermo-
elasticity problem

Emsat ¼ h
tBI : eI

mi, (D.10)

BI is the stress concentration tensor and h�i denotes the averaging operation over the volume.
The magnetostriction strain being isochore (Du Trémolet de Lacheisserie, 1993), and the macroscopic

behavior being isotropic, the magnetostriction strain tensor is written

Em ¼ Ekm

1 0 0

0 �
1

2
0

0 0 �
1

2

0
BBBB@

1
CCCCA; Ekm being a function of the magnetic field. (D.11)

The analytical calculation of Emsat finally leads to the following form for Ekmsat (the component of Emsat parallel
to the applied magnetic field):

Ekmsat ¼
2
5
l100ka

þ 3
5
l111k

b. (D.12)

As for the shear modulus, different estimates can be obtained, leading to different values for ka and kb.
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Fig. D.2. Several estimates for the saturation magnetostriction strain depending on the single crystal elastic anisotropy—Voigt (V), Reuss

(R), Hashin and Shtrikman (HSþ and HS�) and self-consistent (SC) estimates.

Table D.2

Several estimates for the saturation magnetostriction strain of an isotropic iron polycrystal

Reuss HS� Self-consistent HSþ Voigt

Eksatmsat
�4:20� 10�6 �7:90� 10�6 �8:75� 10�6 �9:25� 10�6 �11:9� 10�6
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The Voigt and Reuss hypotheses leads to

EkVmsat ¼
2mI

al100 þ 3mI
bl111

2mI
a þ 3mI

b

and EkRmsat ¼
2l100 þ 3l111

5
. (D.13)

Hashin and Shtrikman and self-consistent estimates can also be obtained (leading to more complicated
expressions for ka and kb).

In the case of iron, we have

l100 ¼ 21� 10�6 and l111 ¼ �21� 10�6. (D.14)

The corresponding estimates for the saturation magnetostriction strain are given in Table D.2.
Fig. D.2 shows the sensibility of this result to the single crystal elastic anisotropy.
As expected, all these estimates give the same result when the single crystal is isotropic.
Fig. D.3 shows the saturation magnetostriction strain depending on the magnetostrictive anisotropy of the

single crystal. When the single crystal is isotropic, all these estimates are equal. But they rapidly become
different when the anisotropy increases. For specific cases, different estimates can lead to different signs for the
strain. A situation of elastic isotropy or magnetostrictive anisotropy lead to great simplifications, and give
identical estimates whatever the chosen hypotheses (lower and upper bounds are equal). The divergence of
these estimates appear as a result of the combination of both elastic and magnetostrictive anisotropy.

D.3. Maximum magnetostriction strain

Maximum magnetostriction strain is obtained, for a material with high level of magnetocrystalline
anisotropy, when the wall displacements are stabilized and the magnetization rotation mechanism not started
(we suppose here l1004l111). Assuming that these two mechanisms are successive (and not simultaneous as
they are actually), the maximal magnetostriction strain is obtained by prohibiting in the modeling of the
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Table D.3

Several estimates for the maximum magnetostriction strain of an isotropic iron polycrystal

Reuss HS� Self-consistent HSþ Voigt

Ekmmax
8:40� 10�6 6:55� 10�6 6:13� 10�6 5:87� 10�6 4:54� 10�6
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Fig. D.3. Several estimates for the saturation magnetostriction strain depending on the single crystal magnetostrictive anisotropy—Voigt

(V), Reuss (R), Hashin and Shtrikman (HSþ and HS�) and self-consistent (SC) estimates.
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rotation mechanism, i.e. by giving arbitrary high values for the anisotropy constants. For the calculation of
analytical values presented in the previous section, it is equivalent to use l111 ¼ 0 in Eq. (D.12).

Assuming that the relations obtained in the case of magnetic saturation are still valid (even if the
magnetization is no more uniform within the material), we obtain several estimates for the maximum
magnetostriction strain

Emmax
¼

2

5
l100ka

1 0 0

0 �
1

2
0

0 0 �
1

2

0
BBBB@

1
CCCCA. (D.15)

Results are listed in Table D.3.
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