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Abstract. This paper addresses a multiscale strategy for the prediction of anhysteretic magneto-elastic
behavior and its application to the definition of a magneto-elastic constitutive law for Terfenol-D. The
multiscale modeling is based on an energetic procedure at the single crystal scale. Localization and ho-
mogenization procedures are then applied to deduce the constitutive law of polycrystalline media from
the behavior of the corresponding single crystal. The method is applied first to define the magneto-elastic
behavior of single crystals, and the application to polycrystalline samples is then considered. Modeling
results are compared to experimental data.

PACS. 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction – 46.25.Hf Thermoe-
lasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity)

1 Introduction

Magnetostriction is the spontaneous strain that occurs
when a magnetic material is subjected to a magnetic
field. In the case of rare-earth alloys such as Terfenol-
D (Tb0.27Dy0.73Fe2), this strain is far larger (about
10−3) than for most materials, and finds applications
in transducer and actuator design [1]. However, the
magnetostrictive behavior of Terfenol-D is very sensitive
to the application of stress. The prediction of the magneto-
elastic behavior of Terfenol-D, including this sensitivity
to stress, can lead to optimum design for giant magne-
tostrictive transducers and actuators. A multiscale strat-
egy for the description of magneto-elastic couplings phe-
nomena has been recently proposed [2,3]. In this approach,
a time consuming minimization is necessary to define the
single crystal behavior. This minimization procedure can
be avoided thanks to the discretization of the single crys-
tal problem. After the presentation of this approach, it
is applied to the case of Terfenol-D, firstly by consider-
ing single crystals and then polycrystalline media. It must
be noticed that the proposed modeling is restricted to re-
versible (anhysteretic) magneto-elastic behavior.
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2 Multi-scale modeling principle

Three distinct scales can be considered in the study of
magneto-elastic behavior1 (Fig. 1):

– the magnetic domains scale (µ);
– the single crystal (or grain) scale (φ),;
– the Representative Volume Element (RVE) scale (�).

The modeling principle is based on the description, for
each of these scales, of the mechanisms responsible for
magneto-elastic couplings.

2.1 Magnetic domain scale

In a magnetic domain, magnetization Mα and magne-
tostriction εµ

α are supposed uniform:

Mα = MS mα = MS
T [γ1 γ2 γ3] (1)

εµ
α =
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(2)
1 In most of practical cases, the separation of scales is veri-

fied. A notable exception is the grain oriented iron-silicon steels
for which magnetic domain size can be of the order of the grain
size.
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l φ µ

Fig. 1. Scales (polycrystal-grain-domain) for the modeling of
magneto-elastic behavior – � � φ � µ.

Equation (2) is the classical expression for the magne-
tostriction strain tensor in the case of cubic crystalline
symmetry (see for instance [4]). mα is the direction of the
magnetization (unit vector) and (γ1 γ2 γ3) its direction
cosines, MS is the saturation magnetization of the mate-
rial, λ100 and λ111 its magnetostrictive constants.

The potential energy of a domain is supposed to be
the sum of three contributions:

Wα = Wmag
α + W an

α + W σ
α . (3)

The expression of these energetic contributions can be
written as follows [5]:

– Wmag
α is the magneto-static energy, tending to align

the magnetization Mα along the magnetic field Hα:

Wmag
α = −µ0 HαMα. (4)

– W an
α is the magneto-crystalline anisotropy energy

tending to prevent the rotation of the magnetization
out of the easy axes. This energetic term describes the
existence of easy magnetization directions, and thus
the existence of domains microstructure:

W an
α = K1(γ2

1γ2
2 + γ2

2γ2
3 + γ2

3γ2
1) + K2(γ2

1γ2
2γ2

3) (5)

K1 and K2 denote the anisotropy constants.

– W σ
α is the elastic energy:

W σ
α =

1
2
σα : εe

α (6)

σα and εe
α are respectively the stress and the elas-

tic strain2 tensors in the domain, linked by the single
crystal stiffness tensor Ci in the usual Hooke law:

σα = Ci : εe
α. (7)

If the magneto-mechanical loading is known, namely the
magnetic field Hα and the stress σα, the knowledge of
mα is required to define the magnetization Mα and the
magnetostriction strain εµ

α in the considered magnetic do-
main.

2.2 Single crystal scale

A single crystal (or grain) is defined as a zone where elas-
tic properties are uniform (stiffness tensor Ci). From the

2 The relationship between the elastic strain and the mag-
netostriction strain is not trivial, and can be estimated using
appropriate localization-homogenization procedures [3].

magnetic point of view, the crystal is divided into domain
families, each corresponding to a particular direction of
the magnetization. For any possible magnetization direc-
tion mα, the lower the potential energy Wα, the higher
the existence probability. The existence probability fα of
a magnetization direction mα in a single crystal is de-
fined thanks to a Boltzmann explicit relation [2,6] given
by equation (8)

fα =
exp(−As.Wα)∫
α

exp(−As.Wα)
(8)

As is an additional modeling parameter. It has been
shown [3] to be proportional to the initial slope of the an-
hysteretic magnetic curve when no stress is applied. The
identification of As can be made using one magnetic curve.
All the other parameters are classical physical constants
of the material, identified with independent experimenta-
tions.

Once the existence probability for each direction mα

is known, magnetization M i and magnetostriction εµ
i in

the single crystal are obtained thanks to an averaging op-
eration over all possible directions:

M i = 〈Mα〉 =
∫

α

fα Mα (9)

εµ
i = 〈εµ

α〉 =
∫

α

fα εµ
α. (10)

From a practical point of view, this integral is evalu-
ated numerically after discretization of the directions mα

in space. The possible directions for mα are described
through the mesh of a unit radius sphere S (N unit vec-
tors xn with components xni, i = 1, 2, 3). We used a 10242
point mesh. The — approximative — isotropy of the mesh
is verified to avoid mesh anisotropy effects in the proposed
modeling. For that purpose, the values given in Table 1
are compared to their theoretical value.

The size of the mesh is chosen to ensure a sufficiently
small difference between discrete and numerical values.
Using such a mesh, equations (8), (9) and (10) can be dis-
cretized, and the — time consuming — minimization of
the potential energy (proposed in [2,3] in order to deter-
mine the direction of magnetization in the magnetic do-
mains) is not required. Indeed the directions correspond-
ing to high (resp. low) energy levels will be associated to
low (resp. high) existence probability in equation (8).

2.3 Representative volume element scale

The Representative Volume Element (RVE), or macro-
scopic scale, is the scale at which the constitutive law
is written, and at which the applied solicitations (mag-
netic field and stress) are known. It is a zone large enough
so that its magneto-elastic behavior is representative for
the whole material behavior. Since the material is hetero-
geneous, localization-homogenization rules, depending on
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Table 1. Verification of the mesh isotropy – N = 10242, i =
1, 2, 3, j = 1, 2, 3.

Discrete integral Di Reference integral Ri |Ri − Di|
1
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the microstructure, are necessary to deduce the local load-
ings from the macroscopic ones. In the proposed modeling,
a self-consistent scheme is used [3].

The local magnetic field H i is deduced from the
macroscopic magnetic field Hm according to equation (11)
deduced from the resolution of an inclusion problem3.

H i =
3 + 3χ

m

3 + χ
i
+ 2χ

m

Hm (11)

χ
m

and χ
i

are respectively the magnetic susceptibility of
the polycrystal and of the single crystal. Since the mag-
netic behavior is usually non-linear, a secant definition is
used:

χm =
||Mm||
||Hm|| χi =

||M i||
||Hi|| . (12)

The local stress tensor σi is deduced from the macroscopic
stress tensor σm according to equation (13).

σi = B : σm. (13)

The fourth order tensor B is the so-called stress concen-
tration tensor. In the self-consistent case, the tensor B can
be calculated according to equation (14).

B = Ci : (Ci + C
∗)−1 : (Cm + C

∗) : Cm
−1 (14)

3 Inclusion based models rely on the hypothesis that mean
fields in each phase i are similar to corresponding fields of
an inclusion of phase i embedded in an infinite homogeneous
medium with magnetic property χm [7]. In the self-consistent
case, χm is the magnetic susceptibility of the polycrystal.

Cm is the stiffness tensor of the polycrystal and C∗ is the
Hill constraint tensor deduced from the resolution of the
Eshelby’s inclusion problem (see for example [8]). Once
the local loading is known, the local modeling can be ap-
plied. The macroscopic response (macroscopic magnetiza-
tion Mm and macroscopic magnetostriction strain εµ

m) is
then deduced thanks to a classical homogenization step,
according to equations (15) and (16).

Mm = 〈M i〉 (15)

εµ
m = 〈 t

B : εµ
i 〉. (16)

Since the single crystal is usually anisotropic, the knowl-
edge of the crystallographic texture of the polycrystal is
required. The crystallographic texture can be described
through an Orientation Distribution Function (ODF), rep-
resentative of the orientations of grains in the polycrys-
tal [9]. A Scanning Electron Microscope (SEM), with an
Electron Back Scatter Diffraction (EBSD) measurement
system, can provide a discrete Orientation Data File for
the crystallographic texture of a given material.

2.4 Summary of the multiscale scheme

The principle of the multiscale modeling is summarized on
Figure 2. Entry data are material parameters for the single
crystal (elastic, magnetic and magnetostrictive constants),
texture data and As parameter for the polycrystal, and
the macroscopic magneto-mechanical loading. Since the
localization procedure requires an estimation of macro-
scopic magnetization and strain, an initial solution is also
needed. This initial solution can be arbitrarily chosen, but
the closest to the solution, the faster the convergence of the
calculation. The hypotheses of uniform magnetic field and
stress within the polycrystal can be used for the definition
of that initial solution. The classical multiscale scheme is
then performed until convergence, including the localiza-
tion step, the local constitutive law application and the
homogenization step.

3 Application to Terfenol-D single crystals

The multiscale modeling is applied first to Terfenol-D sin-
gle crystals for which experimental results can be found
in the literature. The material properties of the Terfenol-
D single crystal have also been collected in the literature.
They are summarized in Table 2. Both magnetic and mag-
netostrictive properties have been investigated. The value
of the parameter As has been taken to 2 × 10−3 m3/J.

3.1 Magnetic behavior

In order to exhibit the anisotropy of the magnetic behav-
ior, the M-H curves have been plotted for a magnetic field
applied in three directions of the single crystal, namely
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Table 2. Terfenol-D properties: Saturation magnetization, anisotropy, magnetostrictive and elastic constants.

Constant MS (K1, K2) (λ100, λ111) (C11, C12, C44)

Value 8 105 (−0.8, −1.8) (9, 164) (141, 65, 49)
A/m 105 J/m3 10−5 GPa

Reference [10] [1] [11] [12]

Fig. 2. Multiscale scheme: principle.

〈111〉, 〈211〉 and 〈110〉 direction. These directions are de-
fined with respect to the crystallographic frame (Fig. 3).

The modeling results are plotted in Figure 4.
The relative anisotropy of the single crystal is in good

agreement with the results reported by Wang et al. [13].
The best magnetization directions are the 〈111〉 directions.
However, the magnetic field levels do not correspond to
those obtained experimentally. The value of the magnetic
field H is defined in the simulation as the mean value of
the magnetic field over the material. Concerning the ex-
perimental results, this value is difficult to define precisely
and is often calculated from the value of the current in-
tensity in the windings used to create the magnetic field.
Such a calculation usually neglects the strong macroscopic

[100]

[011]

[111]

Fig. 3. Crystallographic frame in the cubic symmetry.
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Fig. 4. Predicted anhysteretic magnetic behavior in different
crystallographic directions for Terfenol-D single crystal in the
stress-free case.

demagnetizing field effects involved in such experimental
apparatus. This point could explain the discrepancies be-
tween the magnetic field levels in experimental and nu-
merical results. Unfortunately, data concerning the eval-
uation of the magnetic field are usually not given in the
corresponding experimental papers.

3.2 Magnetostrictive behavior

The magnetostrictive behavior has also been evaluated.
The magnetostriction curves have been plotted for a mag-
netic field applied in different directions of the single crys-
tal. The results are plotted in Figure 5.

Here again, the predicted relative anisotropy is in good
agreement with the results reported in [13], but the mag-
netic field axes do still not correspond, probably due to
demagnetizing field effects.
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Fig. 5. Predicted anhysteretic magnetostrictive behavior in
different crystallographic directions for Terfenol-D single crys-
tal in the stress-free case.
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Fig. 6. Predicted anhysteretic magnetostrictive behavior of
Terfenol-D single crystal: effect of a compression stress along
a 〈111〉 direction (a:0, b:2, c:7, d:14, e:21, f:28, g:34, h:41,
i:48 MPa).

3.3 Magnetostriction under stress

The magnetostriction strain is known to be dependent on
stress. The εµ-H curves have been plotted for different
levels of compressive stress. Both stress and magnetic field
are applied along a 〈111〉 direction. The results are plotted
in Figure 6.

Two tendencies are observed. For low magnetic field
levels, the application of a stress tends to decrease the
magnetostriction amplitude. On the other hand, the sat-
uration magnetostriction strain is increasing with the ap-
plied stress. This latter effect is sensitive for low applied
stress but saturates for higher levels. As a consequence,
the magnetostriction curves are crossing each others. Such
an effect has been observed experimentally by Clark
et al. [14]. Unfortunately, a quantitative comparison is not
possible because of the unknown definition of the magnetic
field in the experimental data. Moreover, a small disori-
entation angle of the magnetic field (or stress) from the
〈111〉 direction can significantly modify the results, both
experimental and numerical.

<100> poles <110> poles

<111> poles

x

y

z

Fig. 7. Pole figures for an isotropic polycrystal obtained by
regular zoning of the crystallographic orientations space (stere-
ographic projection).

However, the single crystal modeling has been shown
to capture the main magneto-elastic properties, at least
qualitatively. We can apply the proposed constitutive law
to a polycrystalline specimen.

4 Application to polycrystalline Terfenol-D

In most applications, Terfenol-D is used in its polycrys-
talline form. A polycrystal can be seen as a crystallite
aggregate. The only additional data needed for the mod-
eling are the crystallites orientation. These orientations
are given by an Orientation Distribution Function. This
ODF can be represented in stereographic projection on a
pole figure (see for instance [9]). In the case of an isotropic
polycrystalline Terfenol-D sample, the crystallites orienta-
tion is random. The crystallographic texture represented
by the discrete pole figure of Figure 7 can be used to de-
scribe such an isotropic behavior [3].

The results obtained for the magnetostriction strain as
a function of the magnetic field for several levels of stress
are presented in Figure 8.

The same kind of effect than for the single crystal
is observed: for a given level of magnetic field, the ap-
plication of a compressive stress tends first to increase
the magnetostriction strain and then to decrease it. It
is consistent with the existence of an optimal pre-load
stress for magnetostrictive actuators. The qualitative evo-
lution of the magnetostriction with respect to stress is in
agreement with experimental results previously reported
in the literature [1,15] or by giant magnetostrictive ma-
terial manufacturers [16]. Since a quantitative compari-
son is difficult unless the precise experimental conditions
are known, particularly for the magnetic field level defini-
tion, a specific experimental setup has been developed [17].
Anhysteretic measurements have been performed on a
10 mm diameter Terfenol-D rod. The sample is placed in
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Fig. 8. Predicted anhysteretic magnetostrictive behavior of
Terfenol-D polycrystal: effect of a compression stress along the
magnetization direction (a:0, b:10, c:20, d:30, e:50, f:80 MPa).
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Fig. 9. Experimental anhysteretic magnetostrictive behav-
ior of Terfenol-D polycrystal: effect of a compression stress
along the magnetisation direction (a:0, b:10, c:20, d:30, e:50,
f:80 MPa).

a tension-compression test machine equipped with a mag-
netic solicitation apparatus. Stress and strain are respec-
tively measured thanks to a standard load cell and strain
gages. The applied magnetic field is measured thanks to
Hall effect sensors, and the magnetic induction B in the
sample is obtained through the integration of the induced
voltage on a B-coil surrounding the specimen. The results
are presented in Figure 9.

Except for the maximum strain level that is over-esti-
mated by the model, the agreement is satisfying. Indeed,
it must be recalled that the proposed multiscale approach
does not use the modeled curves for any adjustment oper-
ation. The material parameters are taken from the litera-
ture (see Tab. 2).

The magnetostriction strain is often written as a func-
tion of the magnetic induction B. The corresponding
curves are plotted in Figure 10, assuming that the ma-
terial is isotropic, so that the magnetic induction B, the
magnetic field H and the magnetisation M are parallel
(and then B = µ0(H + M)).

The corresponding experimental data is plotted in Fig-
ure 11.
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Fig. 10. Predicted anhysteretic magnetostrictive behavior of
Terfenol-D polycrystal: effect of a compression stress along the
magnetization direction (a:0, b:10, c:20, d:30, e:50, f:80 MPa).
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Fig. 11. Experimental anhysteretic magnetostrictive behav-
ior of Terfenol-D polycrystal: effect of a compression stress
along the magnetization direction (a:0, b:10, c:20, d:30, e:50,
f:80 MPa).

Both modeling and experimental results show that the
magnetostriction strain first increase for low applied stress
and then decrease. But this decrease is very significant ac-
cording to the model whereas experiments shows that the
compressive stress, after a minimal pre-load, has no strong
influence on the B(H) curve. This is in accordance with an
usual hypothesis for macroscopic magnetostriction strain
modeling of Terfenol-D (see for instance [18]) assuming
that the λ(B) curve is not stress-dependent. However, it
seems to be very particular to Terfenol-D, for which the
effect of stress on magnetostriction saturates very early,
and should not be taken as a general property.

5 Conclusion

A multiscale approach for magnetostrictive behavior mod-
eling has been presented. It is based on a statistical ener-
getic description of the domain microstructure evolution.
This approach has been applied to Terfenol-D single crys-
tals and polycrystals. It has been shown to capture the
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main features of this material’s behavior. One of the ob-
jective of such an approach would be to replace experi-
ments for the identification of macroscopic models used
in numerical simulation for the design of electromagnetic
devices. However this approach is limited to anhysteretic
behavior. The extension to hysteretic behavior is necessary
and supposes to modify the formulation in an incremental
way. It can be done by using the variation of the exis-
tence probability of a given magnetization direction δfα

instead of fα in the model. The definition of δfα is given
by differentiation of equation (8):

δfα =
e−As.Wα −

∫
α

e−As.Wα

∫
α

e−As.Wα

As fα δWα. (17)

This extension is presently a work in progress and will lead
to a full magneto-elastic modeling including hysteresis.
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