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A multiscale model for the behaviour of ferroelectric polycrystalline materials under
electro-mechanical loading is proposed. It is based on an energetic description of the
equilibrium at the single crystal scale using a statistical estimate of the ferroelectric
domain structure. A self-consistent scheme is then used to establish the behaviour of
polycrystalline materials. The approach is anhysteretic but hysteresis effects can be added
afterwards so as to obtain butterfly ferroelectric loops. It is applied to a tetragonal Lead
Zirconate Titanate (PZT). The model allows the investigation of crystallographic texture
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material. By way of an example a (100) fibre texture is predicted to generate as much
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1. Introduction

Ferroelectric ceramic materials are used extensively as
dielectric and semi-conducting components, memory
elements, and piezoelectric sensors, actuators and trans-
ducers. The most popular types of ferroelectric ceramics
are perovskite compounds and their solid solutions
such as BaTiOs, Pb (Zr,Ti;_x) O3 (PZT), (Na,K;_x) NbOs3
and (BigsNags) TiOs. Distortion of the parent cubic state
occurs to produce a spontaneous polarisation orientated
along any of the six equivalent (100) directions for
tetragonal, twelve (110) directions for orthorhombic, or
eight (111) directions for rhombohedral symmetry.
Subsequently, ferroelectric or ferroelastic domain switch-
ing is accomplished by reorientation of the polarisation
through 180° (all structures), 90° (tetragonal), 60°/120°

* Corresponding author at: LGEP - CNRS(UMR8507)/SUPELEC/UPMC/
Univ Paris-Sud, 11 rue Joliot Curie, 91192 Gif-sur-Yvette, France.
Tel.: +33 1 69 85 16 39; fax: +33 1 69 41 83 18.

E-mail address: laurent.daniel@u-psud.fr (L. Daniel).

http://dx.doi.org/10.1016/j.mechmat.2014.01.006
0167-6636/© 2014 The Authors. Published by Elsevier Ltd.

(orthorhombic) or 71°/109° (rhombohedral). Recent
research (Noheda et al., 1999) has suggested that other
types of crystal symmetry (e.g. monoclinic) may occur for
compositions close to a phase boundary, which could help
to explain the high intrinsic piezoelectric activity of such
materials (Guo et al., 2000). However, it is also argued that
the extrinsic contributions to the piezoelectric coefficients
are enhanced near to a phase boundary due to the
formation of nanoscale domain structures (Schénau et al.,
2007; Pramanick et al., 2011). The occurrence of domain
structures in polycrystalline ferroelectrics is driven by
minimisation of the energies associated with electric
depoling fields and elastic residual stresses that arise on
cooling through the paraelectric to ferroelectric phase
transformation (Arlt, 1990). Subsequent reorientation of
domains by electrical poling is necessary to impart a state
of remanent polarisation and hence to obtain useful piezo-
electric and pyroelectric properties in bulk ferroelectric
ceramics. Furthermore, domain wall vibration and
translation or localised domain switching mechanisms
make significant contributions to the nonlinear dielectric,
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elastic and piezoelectric properties of poled polycrystalline
ferroelectrics (Arlt, 1987; Damjanovic and Demartin, 1996;
Hall and Stevenson, 1999). Control of these extrinsic con-
tributions is carried out routinely by industry in order to
develop commercial piezoceramics that exhibit properties
tailored to specific applications (Berlincourt, 1992).

Considerable effort has been directed towards models
that describe the properties of ferroelectric materials in or-
der to provide accurate design tools. They result in a wide
range of modelling approaches in order to define the elec-
tromechanical response of a ferroelectric material submit-
ted to an electromechanical loading. These models mainly
belong to three categories: macroscopic models, micro-
mechanical models and domain structure models.

Macroscopic models are focused on the phenomenolog-
ical description of the typical polarisation hysteresis and
strain butterfly loops. Most of the models in the literature
are based on the introduction of appropriate internal vari-
ables to describe such a behaviour. Following the early
work of Chen and Peercy (1979), Maugin and co-workers
developed a sound thermodynamical framework for
the macroscopic description of ferroelectric behaviour
(Bassiouny et al., 1988; Bassiouny et al., 1988; Bassiouny
and Maugin, 1989; Bassiouny and Maugin, 1989). This ap-
proach is inspired by metal plasticity models with the use
of dissipation potentials. It has further been developed by
numerous authors (Kamlah and Tsakmakis, 1999; Cocks
and McMeeking, 1999; Huber and Fleck, 2001; Landis,
2002; McMeeking and Landis, 2002; Elhadrouz et al.,
2005a; Klinkel, 2006; Mehling et al., 2007). The objective
of macroscopic models is an accurate description of ferro-
electric behaviour and an easy implementation into
numerical design tools (Klinkel, 2006). A review of macro-
scopic models has been given by Landis (2004). Some lim-
itations of these models are that they do not provide an
insight into the physical mechanisms responsible for ferro-
electric behaviour and their capability to describe the ef-
fect of complex loadings is often questionable.
Furthermore the effect of material heterogeneity on the
overall behaviour cannot be addressed. For instance, these
approaches do not consider the effect of residual stresses,
although they have long been recognised as an important
influence on the properties of ferroelectric ceramics (Bues-
sem et al., 1966; Buessem et al., 1966; Arlt et al., 1985).
These internal stresses are created by the manufacturing
process, material heterogeneity or by the evolving ferro-
electric domain structure. Moreover the input parameters
for phenomenological models have to be determined by
experimental measurements, and they cannot predict the
influence of a change in microstructural parameters on
the macroscopic ferroelectric behaviour.

In order to overcome such shortcomings, micro-
mechanical approaches have been developed extensively
over the last two decades. Inspired by the micro-mechan-
ical models for plastic behaviour, these models consist of
a local constitutive law for ferroelectric single crystals
linked to scale transition rules to describe the behaviour
of polycrystalline materials. For single crystal behaviour,
domain variants are introduced, each corresponding to a
given orientation of the polarisation. The volume fraction
of each variant then becomes an internal variable. A

switching criterion is then defined to describe, in a statis-
tical way, the evolution of the microstructure under elec-
tro-mechanical loading. The switching criterion being
defined, the polycrystal behaviour is described based on
the localisation-homogenisation rules in order to define
how the single crystal interacts with the surrounding
material. Early approaches described a grain as a single do-
main switching as a whole (Hwang et al., 1995; Hwang
et al., 1998; Michelitsch and Kreher, 1998; Chen and Lynch,
1998; Lu et al., 1999). More realistic models of progressive
switching have been later developed in order to consider
the possible coexistence of two domain variants (Rodel
and Kreher, 2000), or the coexistence of all possible vari-
ants in a single crystal (Li and Weng, 1999; Huber et al.,
1999; Huber and Fleck, 2001; Elhadrouz et al., 2005b; Shilo
et al., 2007). The local electro-mechanical loading at the
single crystal scale can be defined by several means. Uni-
form stress and electric field can be considered (Hwang
et al., 1995; Hwang et al., 1998; Michelitsch and Kreher,
1998; Lu et al.,, 1999). Homogenisation tools can also be
used to estimate the electric field and stress within the
material. The self-consistent scheme derived from the
description of plasticity of polycrystals by Hill (1965) is
usually recognised as the most suitable for polycrystals
(Huber et al., 1999; Rodel and Kreher, 2000; Huber and
Fleck, 2001). Other authors made the choice of the finite
element method to estimate these fields fluctuations
(Hwang and McMeeking, 1999; Li and Fang, 2004; Kamlah
et al., 2005; Haug et al.,, 2007; Pathak and McMeeking,
2008). Reviews on micromechanical modelling of ferro-
electrics can be found in Landis (2004) and Huber (2005).

The need for a deeper understanding of ferroelectric
behaviour and the pursuit of engineered domain configu-
rations to enhance ferroelectric properties motivated the
development of microscopic models describing domain
microstructure evolution. These models are either founded
on simplified domain configurations (Li and Liu, 2004;
Rédel, 2007; Tsou and Huber, 2010) or exploit the domain
compatibility conditions to describe the evolving domain
structure (Loge and Suo, 1996; Yen et al., 2009; Weng
and Wong, 2009). Another approach relies on phase field
theory to define the local orientation of the polarisation
(Chen, 2002; Choudhury et al., 2005; Su and Landis,
2007). The use of atomic-scale finite element method has
also been proposed (Zhang et al., 2012). A review on do-
main evolution models has recently been undertaken by
Potnis et al. (2011). These approaches provide a deep in-
sight into the basic physical mechanisms of domain
switching but are often limited to 2D configurations and
incur heavy computational costs.

The model presented in this paper lies within the family
of micro-mechanical approaches. The novelty stands in its
formulation inspired from ferromagnetic models rather
than crystalline plasticity. This formulation is derived from
the micro-mechanical approaches developed in the context
of magneto-elasticity (Armstrong, 1997; Buiron et al.,
1999; Armstrong, 2002; Daniel et al., 2008). Compared with
previous micro-mechanical approaches for ferroelectric
behaviour, the proposed model does not rely on plasticity
theory and does not make use of fictitious hardening
parameters for the polarisation process (Huber et al., 1999).
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Such hardening parameters are introduced in micro-
mechanical models to regularise the computation, and
can be the source of calculation convergence issues if
chosen too small. Moreover it imposes the use of an
incremental definition of the material response with small
calculation steps associated with large computation time.
Because the proposed approach does not require an incre-
mental formulation the calculation can be much faster if
the response of the material is sought only for a limited
number of loading points. The counterpoint is that the
model is anhysteretic, meaning that no description of
the local hysteresis effects is given. Hysteresis effects can
be computed afterwards through a phenomenological
approach. Another drawback of most previous micro-
mechanical models is that once the material is fully
polarised, transverse domains cannot re-appear when the
field is reversed. As already proposed by some authors
(Buiron et al., 1999; Arockiarajan et al., 2007; Tang et al.,
2009), the introduction of a probability function to
describe the evolution of domain structure can address this
limitation. The main advantage of the proposed approach,
in addition to its non-incremental formulation, is its ability
to describe texture effects, and local stress contributions.
In Section 2 the model for the anhysteretic ferroelectric
behaviour of single crystals is detailed. The extension to
polycrystalline behaviour, based on a self-consistent
approach, is then proposed in Section 3. In Section 4 the
model is applied to single crystal, isotropic polycrystal
and textured polycrystal of a representative tetragonal
PZT. A discussion on anhysteretic behaviour and possible
extensions to dissipative behaviour is finally proposed.

2. Local equilibrium at the single crystal scale

A ferroelectric single crystal is divided into ferroelectric
domains. It is described as a set of K domain families each
corresponding to a given local polarisation P,. For example,
K =6 for tetragonal materials (& corresponding to the six
(100) directions) and K=8 for rhombohedral materials
(o corresponding to the eight (11 1) directions). In each do-
main, the polarisation P, is uniform and aligned with an
easy axis a (Eq. (1)).

P, =Py M

Py is the magnitude of the spontaneous polarisation of a
ferroelectric domain. Each domain also undergoes a uni-
form ferroelectric strain &¢. Assuming that this ferroelec-
tric strain is isochoric (Cao and Evans, 1993), the
ferroelectric strain tensor can be written as a function of
the saturation ferroelectric strain i{f (Eq. (2)).

. 3 1
s@:il{f(ao@a—?I) )
I is the second order identity tensor. Eq. (2) can also be
written in the form of Eq. (3), J; being the Kronecker delta.

3. 1.
)y =3 4 (5~ 304) 3)

}.foe can be obtained by measuring the saturation strain
of a single crystal, or the saturation strain of an isotropic

polycrystal (see Appendix F). Assuming an isochoric trans-
formation from the cubic phase, ¥ can also be deduced
from the parameters of the transformed crystallographic
structure under no load. i{f is given by Eq. (4) for tetragonal
crystals (c and a are the lattice parameters) and by Eq. (5)
for rhombohedral crystals (7 is the distortion angle).

g 2(c—a)

fe _

0=t 2a (4)
W=7 (5)

Ferroelectric single crystals are also piezoelectric so
that the local electric field E, in a domain o induces a pie-
zoelectric strain & (Eq. (6)) and the local stress &, induces
a stress induced electric induction D¥* (Eq. (7)).

& = E, (6)

D” =d”: o, (7)

d” is the standard piezoelectric tensor at the single
crystal scale. Usual elastic and dielectric constitutive laws
give the uncoupled contribution to the strain and to the
electric induction (Egs. (8) and (9)).

& =38,:0, (8)

D¢ =¢,-E, 9)

& is the elastic strain and S, the elastic compliance
fourth order tensor. D} is the purely dielectric induction
and €, the dielectric permittivity. Egs. (6)-(9) define the
standard dielectric, elastic and piezoelectric relationships
(Corcolle et al., 2008).

The total strain ¢, in a domain « is then defined as the
sum of the elastic, piezoelectric and ferroelectric contribu-
tions (Eq. (10)).

&y =85+ & +8f (10)

Similarly the total dielectric induction D,, in a domain o
is defined as the sum of the purely dielectric, piezoelectric
and ferroelectric contributions (Eq. (11)).

D, =D; +D¥ +P, (11)

Following the approaches developed for magneto-
elastic behaviour (Hubert and Schaéfer, 1998; Daniel et al.,
2008), the free energy W, of a ferroelectric domain can
be defined as the sum of an electrostatic contribution W=
and of an elastic contribution W¢ (Eq. (12)). Electrostatic
and elastic energies are written according to Eqs. (13)
and (14) respectively (see Appendix B).

W, =W + W (12)
WE = —E,.D; (13)

(N . o*
W7 =—0,: g,

(14)
D; is the non-dielectric contribution to D, at the
domain scale (comprising the sum of the piezoelectric

contribution and the spontaneous polarisation) while &,
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is the inelastic strain at the domain scale (comprising the
sum of the piezoelectric strain and the spontaneous polar-
isation strain).

_DF P, (15)

g =g+ (16)

For the sake of simplicity, we will consider weak elec-
tric field and stress heterogeneity within the single crystal,
so that E, and &, can be replaced by the average values at
the single crystal scale E, and g, for the calculation of the
free energy. The free energy of a domain family is then gi-
ven by Eq. (17).

W,=-E,-P,—0,:8-2E, d7 g, (17)

W, only depends on the electromechanical loading at
the single crystal scale (average electric field E, and stress
o) and on material parameters (Po, 2 and dpl)

The equilibrium of a single crystal under a given elec-
tro-mechanical loading results in a complex domain
microstructure made of a large number of ferroelectric
domains. In order to describe this microstructure, the
volume fraction f, of each domain family o is introduced.
This internal variable has already been introduced in many
previous models (Huber et al., 1999; Buiron et al., 1999). In
the proposed model the volume fractions are explicitly
calculated (Eq. (18)) by means of a Boltzmann probability
function (Buiron et al., 1999; Daniel et al., 2008).
_ exp(-A.W,)

A MO
> exp(-A.W,)

(18)

A, is an adjustment parameter. Its value can be related to
the initial slope y, of the polarisation curve under no
applied stress (see Appendix C and Daniel et al. (2008)):

3%
As = 730 (19)
It can be noticed that f, naturally satisfies:
K
S fu=1 (20)
=1

Assuming that the domain wall volume is negligible
compared to the volume of ferroelectric domains, the
response of the single crystal can be obtained by an averag-
ing operation over all the domain families. The dielectric
induction and the total strain at the single crystal scale
are given by Egs. (21) and (22) respectively.

K
=> D, (21)
=1

&, = (&), Zf "y (22)

In addition we assume that the non-dielectric part of
the electric induction D}, and the inelastic part of the strain
&, can be obtained from the volume average over the single
crystal (Egs. (24) and (23)). This assumption is rigorously

valid only if we consider homogeneous dielectric and elas-
tic properties within the single crystal (e, =€, and
Sy =8y, for all a).

K
=> fug, (23)
o=1
K
=Y f.D, (24)
o=1

3. Polycrystal behaviour

Polycrystalline behaviour can be deduced from appro-
priate averaging of single crystal behaviour. We adopt here
the classical self-consistent scheme, known to be appropri-
ate for polycrystalline materials (Hill, 1965; Berveiller and
Zaoui, 1978; Huber et al., 1999; Daniel et al., 2008). Given
the macroscopic applied stress 6o and electric field Eq, the
electromechanical loading at the single crystal scale is de-
fined by Eqgs. (25) and (26).

6, =55 :00+L3: (s;, - s;) (25)
E, = AL :Eq+ ME (l);l - D;) (26)

B and Bi are respectively the stress and electric field
concentration tensors. They account for the influence of
the heterogeneity of the elastic and dielectric properties
on the stress and electric field distributions within the
polycrystal. £7 and ME are respectively the stress and elec-
tric field 1ncompat1b111ty tensors. They account for the mis-
fit between local and overall strain or dielectric induction
in the creation of internal stresses and electric field. If ini-
tial intergranular stresses are pre-existing - for instance
due to fabrication processes - they can also be added at
this stage (Eq. (25)). The practical calculation of the locali-
sation operators is given in Appendix D. They depend on
the single crystal properties and on the material overall
properties. As shown by Corcolle et al. (2008), the localisa-
tion operators in coupled electro-mechanical problems can
be obtained separately from the purely elastic and purely
dielectric problem. The contribution of piezolectric effect
and polarisation state to the heterogeneity of stress and
electric field is then reported in the second term, introduc-
ing &, and &;, or D, and D;,.

Once the local electromechamcal loading is obtained
from Eqgs. (25) and (26), the free energy W, of each domain
family o is calculated (Eq. (17)) and then the volume frac-
tions (Eq. (18)). The average response of each single crystal
being known, the last step is the homogenisation transition
scale to define the macroscopic response of the material
(Egs. (27) and (28)).

g = (&)q (27)

Do = (Dy)g (28)

The inelastic part of the strain (Eq. (29)) and the non-
dielectric part of the electric induction (Eq. (30)) can also
be defined (Corcolle et al., 2008).
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AT (29)
D, = (A D}, (30)

The localisation operations defined by Egs. (25) and (26)
make use of the macroscopic response of the polycrystal
(&5, Dg,) so that the procedure is self-consistent.

4. Modelling results

The proposed model is suitable for both rhombohedral
and tetragonal materials. Single crystal elastic, dielectric
and piezoelectric anisotropies are taken into account
through the use of material properties defined at the do-
main scale (elastic stiffness C,, dielectric permittivity €,,
piezoelectric tensor d?’, spontaneous polarisation P, and
ferroelectric strain i{f ). Polycrystalline anisotropy is taken
into account through the use of a discrete orientation dis-
tribution function to define grain orientations. As an illus-
tration, the model has been applied to a single crystal, to an
isotropic polycrystal and finally to a strongly textured
polycrystal, all with a tetragonal structure.

The properties used for the single crystal have been ta-
ken from Kamlah and Wang (2003) to represent tetragonal
Lead Zirconate Titanate (PZT) except A (specific to the pro-
posed modelling). These properties are as follows. Elastic
behaviour is taken as uniform within a single crystal
(Cy =Cy) and isotropic (Young’s modulus E =60 GPa and
Poisson’s ratio v =0.37). Dielectric behaviour is taken as
uniform within a single crystal (e, =€,) and isotropic
(dielectric permittivity € =0.02 [LF/m). The piezoelectric
properties are transversely isotropic about the direction
of the spontaneous polarisation which is expected for a
tetragonal perovskite ferroelectric (Du et al., 1998; Damja-
novic et al.,, 2002) (dy5 = 5.8 107 m/V, d3; = —2.1 1071 m/V,
ds3 =4.5 1071 m/V). The spontaneous ferroelectric strain
is A{f =0.2% and the spontaneous polarisation is
Py = 0.3 C/m?. The value for A; is A; = 10> m?/]. Using these
material parameters, the role of local elastic anisotropy is

0.3f <100> 4

0.25f <110> ]

<111>

E (MV/m)

(a) Electric induction curve

0 0.2 0.4 0.6 0.8 1

neglected in the modelling. A discussion on the influence
of elastic anisotropy is proposed in Appendix E.

4.1. Single crystals

Fig. 1 shows the anisotropy of the ferroelectric behav-
iour of the single crystal under electric field.

As expected for a tetragonal material, the (100) direc-
tions are the easy polarisation axes (Fig. 1(a)). Once the fer-
roelectric switching is totally completed the electric
induction evolves linearly as a function of the electric field,
consistent with a purely dielectric behaviour. The strain-
electric field curves (Fig. 1(b)) also become linear when
the domain switching is totally completed, corresponding
to piezoelectric behaviour. For tetragonal PZT the (111)
curve is totally linear since only 90° switching can induce
ferroelectric strain, and this type of domain switching does
not occur for a tetragonal material loaded along the (111)
direction (Hall et al., 2005).

Fig. 2 illustrates the behaviour of a single crystal under
combined uniaxial stress and electric field along a (110)
direction. Due to the applied stress, the strain at zero elec-
tric field is not zero. For reading clarity, the curves of
Fig. 2(b) have been shifted so that the strain at zero electric
field is removed, reproducing what would be an experi-
mental measurement for which the reference strain state
is defined at zero electric field. This convention will be ap-
plied in the following for all strain curves.

Similar to the behaviour in the absence of stress, both
the electric induction and the strain curves become linear
as soon as the ferroelectric domain switching is completed.
It is evident from Fig. 2 that the effect of stress is very sig-
nificant and does not show symmetry between tension and
compression. A high tensile stress completes the 90°
switching so that no ferroelectric strain is added by apply-
ing an electric field and the strain curve is linear from the
beginning. 180° switching remains possible - stress has no
effect on 180° switching because the elastic energy is a
quadratic function of @ - so that a change in polarisation

2500

2000f

1500

1000

500r

0 0:2 0:4 0:6 0:8 1
E (MV/m)

(b) Strain curve

Fig. 1. Directional properties of a PZT single crystal. Ferroelectric behaviour along (100), (110) and (11 1) directions in terms of (a) electric induction and

(b) strain (components parallel to the applied electric field).
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(a) Electric induction curve
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1500 =0
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. - - =25 MPa
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< 4000}
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0 0.2 0.4 0.6 0.8 1
E (MV/m)

(b) Strain curve

Fig. 2. PZT single crystal. Ferroelectric behaviour along (110) direction with an applied uniaxial stress along (110). For clarity the strains are plotted

relative to those at zero applied field.

can occur by domain switching under the application of an
electric field. Under a high electric field, the difference in
dielectric induction between the different loadings is due
to the piezoelectric effect (term D).

4.2. Isotropic polycrystals

A set of crystal orientations are needed to describe a
polycrystal. To approximate an isotropic polycrystal we
use a regular zoning in the space of possible orientations
rather than a random selection from that space. Each crys-
tallite is defined by three Euler angles (¢, , ¢,) following
Bunge’s notation. Each angle takes values regularly distrib-
uted in their domain, following Table 1.

The number of values taken in each space domain gives
the precision of the texture isotropy. We use a distribution
function made of 546 (13 x 7 x 6) different orientations.
The corresponding pole figures are given in Fig. 3. This

Table 1
Values chosen for the Euler angle for the “isotropic” texture.

Variable Domain Number of values
1 [0,27] 13
cos Y [0,1] 7
o [0,2m) 6

<110>

approximation to isotropic texture has been used by Daniel
et al. (2008) and gives representative results with a lower
number of orientations than if a set of random orientations
was used (see Appendix F).

Fig. 4 shows the modelling results for the ferroelectric
behaviour of the isotropic polycrystal under uniaxial stress,
the stress being applied in the direction parallel to the
electric field. It should be noted that the model allows
calculating the polycrystal response under any type of
electromechanical loading and notably multiaxial stress
states. It is also noteworthy that the effect of stress on
ferroelectric behaviour is non-symmetric in tension/
compression.

For the material studied, a tensile stress increases the
amplitude of the electric induction while compression
decreases it (Fig. 4(a)). The effect of stress on the strain
curve is more complex to analyse (Fig. 4(b)). This effect is
the result of two influences, as illustrated in Fig. 5.

Compressive stress reduces the ferroelectric strain
somewhat but tensile stress significantly reduces it at high
levels of electric field (Fig. 5(a)). On the other hand, the pie-
zoelectric strain is slightly increased by a tensile stress
while a compressive stress reduces it (Fig. 5(b)). The com-
bination of these effects results in a reduction of the total
strain under stress. Recall that the initial strain in the ab-
sence of electric field is removed from the total strain in
the proposed figures. It can be noticed that although linear

<111>

<100>

y

Fig. 3. (100),(110) and (111) pole figures for the “isotropic” polycrystal obtained by regular zoning of the crystallographic orientations space

(stereographic projection, 546 orientations).
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(b) Strain curve

Fig. 4. PZT isotropic polycrystal: anhysteretic ferroelectric behaviour under uniaxial stress along electric field direction. For clarity the strains are plotted

relative to those at zero applied field.
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(a) Ferroelectric strain curve
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(b) Piezoelectric strain curve

Fig. 5. PZT isotropic polycrystal: ferroelectric and piezoelectric strain under uniaxial stress along electric field direction. For clarity the strains are plotted

relative to those at zero applied field.

at the domain scale the piezoelectric strain is non linear as
a function of the applied electric field. This is due to the
evolving domain structure that changes the volume frac-
tion of domains as the electric field changes.

The model also allows the extraction of the evolution of
intergranular internal stresses under electromechanical
loading. As an illustration, Fig. 6 shows these internal
stresses in the material in the absence of applied stress
for an applied electric field E=1 MV/m.

The average of the internal stresses remains equal to
the macroscopic stress (zero here) whatever the level of
applied electric field, but the local stress levels are getting
higher as the electric field increases. Fig. 7 illustrates the
evolution of intergranular stress as a function of the ap-
plied electric field.

Fig. 7(a) shows the evolution of the stress second order
moments within the polycrystal (components My, and Ms3,
the electric field being applied along direction 3). Second
order moments are the average values of the square of

stress components. High second order moments indicate
high heterogeneity of stress within the material. Fig. 7(b)
gives the maximum value of intergranular stress within
the polycrystal. Even though the average stress remains
zero whatever the level of the electric field, the maximum
local stresses reach significant amplitudes that could lead
to fatigue and failure.

4.3. Textured polycrystals

The model allows the investigation of the effect of crys-
tallographic texture on ferroelectric behaviour. This is of
primary importance for the development of lead-free fer-
roelectric ceramics since the development of specific tex-
tures can enhance the ferroelectric properties, allowing
lead-free materials to compete with standard lead-based
ferroelectric ceramics (Hong et al., 2000; Saito et al.,
2004; Rodel et al., 2009). A pure {hkl}(100) fibre crystallo-
graphic texture aligned with the x direction has been
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Fig. 6. Distribution of intergranular residual stress (MPa) within the polycrystal with no applied stress and an applied electric field E = 1 MV/m. The stress
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Fig. 7. Variability of stress and maximum values within the polycrystal as a function of the applied electric field (no applied stress). M;; are the components
of the second order moments of stress. g is the maximum positive principal stress, ¢, is the maximum negative principal stress (absolute value) and t™*
is the maximum shear stress within the material.
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Fig. 8. (100), (110) and (111) pole figures for a perfect {hkl}(100) fibre texture (stereographic projection, 90 orientations).

simulated for PZT (Fig. 8). Its behaviour along the fibre
direction (x) is compared with that of the corresponding
isotropic polycrystal in Fig. 9.

It is evident that the presence of a large number of
(100) directions along the poling direction significantly
enhances the permittivity. The electric induction is
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Fig. 9. PZT textured polycrystal: anhysteretic ferroelectric behaviour along the x (fibre) direction (solid line) in the absence of applied stress compared with

the corresponding isotropic polycrystal (dashed).

increased by 33% at 1 MV/m and by 30% at 2 MV/m. Tex-
ture has an even more dramatic effect on the longitudinal
strain giving an increase of 156% at 1 MV/m and 96% at
2 MV/m over the isotropic case. Such a model is useful in
assessing the likely rewards associated with improved tex-
ture processing of such materials.

5. Relevance and practical determination of
anhysteretic curves

Anhysteretic curves describe the thermodynamic
equilibrium of a material under a given external loading.
They have long been used to describe the behaviour of
ferromagnetic materials (Bozorth, 1951; Jiles, 1991). The
proposed anhysteretic approach gives the thermodynamic
equilibrium in terms of volume fractions of different
domain families - or variants - for a material under a given
electromechanical loading. Such an approach does not
account for any cause that would prevent the domains
from switching in an optimal energetic manner. Even
though the role of defects or history effects are not consid-
ered, the anhysteretic curve can provide important insights
into the basic mechanisms of ferroelectric behaviour under
coupled loading. Anhysteretic behaviour is the idealised
material behaviour, and the actual equilibrium state can
be defined as a variation around this reference state.

Although it cannot be continuously described, each
point of an anhysteretic curve can be measured. Two main
experimental methods can be used.

The first method is to apply to the material a large
amplitude alternating electric field superimposed on a dc
electric field. The amplitude of the alternating field is
slowly reduced to zero until only the dc field remains.
The final polarisation and strain measurements provide
the point of the anhysteretic curve corresponding to the
applied dc field. The anhysteretic curves are obtained by
repeating the operation for several dc fields. If the ampli-
tude of the alternating field is sufficiently large, the fre-
quency sufficiently low and the decrease of amplitude
sufficiently smooth, this method provides repeatable and

well defined curves. The main issue with this method is
the risk of material failure due to the high number of high
amplitude cycles imposed on the sample.

A second method involves heating the material below its
Curie Temperature and then cooling it slowly under an ap-
plied dc field. Here again the procedure has to be applied for
several dc field values to build the anhysteretic curves.

Although not exactly identical, as shown in the case of
ferromagnetic materials by Pearson et al. (1997), these
methods are expected to provide similar curves.

6. Introduction of hysteresis effects

The proposed model is anhysteretic, meaning that it
describes the reversible part of ferroelectric behaviour.
Ferroelectric behaviour is of course fundamentally
hysteretic. The hysteresis effects can be added afterwards
as proposed, for instance, by Jiles and Atherton (1984), or
Hauser (2004) for ferromagnetic behaviour. We propose
to follow here the approach of Hauser (2004). The hyster-
esis is introduced at the single crystal scale. The input of
the calculation is still the macroscopic anhysteretic electric
field EJ. Once all the internal variables have been
calculated, the total electric field E;" at the single crystal

scale is written according to Eq. (31).
Ey' —E)' & [1-aexp(b(P,— P"))] (c+d[ES)  (31)

P;eb is the last value of P, for which the direction of the
electric field has been reversed. In contrast to the anhyste-
retic model, this formulation requires the implementation
of an incremental formulation so that the loading history is
known. Moreover it adds four adjustment parameters
a,b,c and d. These four parameters can be identified from
a major polarisation loop: a and d affect the general shape
of the loop, b governs the stiffness of the first polarisation
curve and the sharpness of the polarisation knees, and ¢
defines the coercive field of the major loop. The macro-
scopic total field EY' is then obtained by a volume averag-
ing over the volume of the polycrystal:
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Fig. 10. PZT isotropic polycrystal: Hysteresis and butterfly ferroelectric loops for an isotropic PZT polycrystal with the strain parallel to the electric field
using the formulation given in Eq. (31) (solid line), and using the switching threshold given in Eq. (33) (dashed). The anhysteretic solution is also recalled

(dashdot).
ES' =~ ("), (32)

This approach has been implemented for the isotropic
polycrystal of Section 4.2 using a=1.0, b=110m?/C,
c=1.7 10°V/m and d=0.10. The results are shown in
Fig. 10 for the dielectric induction and strain under applied
electric field.

Another simple way to introduce hysteresis is to intro-
duce a switching threshold. The volume fractions f, are
then calculated not according to the local electric field E,
but to an effective electric field E?/ff parallel to E, with a
magnitude EZ defined by Eq. (33).

Ejff = sup(0, E, — E) for the first polarisation curve

Eiff = E™ 4 inf(0, E, + E¥) for decreasing electric field

Ejff = E™" 1 sup(0, E, — E") for increasing electric field
(33)

E¥ is the threshold electric field under which no domain
switching can occur. E™ and E™" are the maximum and
minimum value of the electric field since last reversal of
electric field direction. The corresponding results for the
dielectric induction and the ferroelectric strain are plotted
in Fig. 10 using a threshold E' = 1.8 MV/m. A stress thresh-
old could also be introduced for domain switching under
stress. In the general case of a coupled electromechanical
loading, an energetic switching threshold should be de-
fined. Such an approach has not been implemented yet
and is beyond the scope of this paper focused on anhyste-
retic behaviour.

7. Conclusion

In this paper a novel anhysteretic multiscale model for
ferroelectric behaviour has been proposed. It applies to
polycrystalline ferroelectrics with tetragonal or rhombohe-
dral crystallographic structure. It naturally includes the
description of anisotropies at multiple scales - ferroelectric

domain, single crystal and polycrystal scale. A discrete ori-
entation distribution function is used as an input of the
model so that the relationship between crystallographic
texture and macroscopic properties can be investigated.
This illustrates the potential benefits achievable by im-
proved processing to introduce crystallographic texture
in polycrystalline materials. The model also provides an
estimate of intergranular internal stresses which are of pri-
mary importance for the durability of ferroelectric materi-
als. It shows that even when the average stresses are zero,
significant (up to 100 MPa) stresses are generated with
increasing electric field within the grains.

The approach is restricted to anhysteretic behaviour,
but it is believed that although the calculated polarisation
or strain curves do not include dissipation effects, some ba-
sic mechanisms of electromechanical coupling in ferroelec-
tric materials are captured by the model. The model gives a
description of electric field and stress fluctuations within
the material for a given polarisation level. Hysteresis ef-
fects can be introduced afterwards to obtain realistic
strain-field butterfly loops at the price of an incremental
formulation and increased computational cost.

Numerous validation steps remain ahead. An experi-
mental setup is currently being designed in order to
perform practical anhysteretic measurements on ferroelec-
tric ceramics. These measurements will allow quantitative
validation of the proposed model, and are expected to
demonstrate the relevance of the separation between
reversible and irreversible contributions to ferroelectric
behaviour. Such a separation has been instrumental in
the development of efficient constitutive models for ferro-
magnetic behaviour (e.g. Jiles and Atherton (1984) and
Hauser (2004)). A comparison between the main micro-
mechanical approaches to ferroelectric behaviour available
in the literature should also be undertaken in order to
highlight the respective strengths and weaknesses of mod-
els derived from plasticity theory and from ferromagne-
tism. This comparison should not only rely on
macroscopic responses of ferroelectric ceramics subjected
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to electro-mechanical loading but also on a local analysis.
This local analysis can be performed using high energy
X-ray diffraction measurements giving access to internal
stresses and volume fractions of domains in ferroelectric
ceramics (Hall et al., 2005). Such experiments can be used
as a powerful tool to discriminate between micro-mechan-
ical models. They can also be used to identify the material
parameters needed to feed these multiscale approaches.
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Appendix A. Nomenclature

A summary of the nomenclature used in this paper is
given hereafter.

A.1. Subscripts

For state variables and material properties, subscripts
define the scale at which the quantity is expressed (see
Table A.2).

Table A.2
Definition of subscripts.

Subscript Corresponding scale

o Ferroelectric domain (microscale)
x Single crystal or grain (mesoscale)
Q Polycrystal (macroscale)

A.2. State variables

The state variables used in this paper as summarised in
Table A.3.

Table A.3

State variables.
Symbol State variable
g Total strain tensor
dfe Ferroelectric strain tensor
&b Piezoelectric strain tensor
&° Elastic strain tensor
& Inelastic strain tensor
c Stress tensor
D Dielectric induction
P Electric polarisation
D" Stress induced dielectric induction
D¢ Purely dielectric induction
D* Non-dielectric induction
E Electric field

A.3. Material parameters

The material parameters used in this paper as summa-
rised in Table A.4.

Table A.4

Material parameters.
Symbol Material parameter
Py Spontaneous electric polarisation
A{f Spontaneous ferroelectric strain
€ Permittivity tensor
d” Piezoelectric coefficients
S Elastic compliance tensor
4 Elastic stiffness tensor (C=S"")
As Adjustment parameter
Ao Initial slope of the macroscopic polarisation curve

Appendix B. Definition of electrostatic and elastic
energies

The electrostatic energy is usually given by:

1

E

Wg:an’Di (B.1)
It can be transformed as follows, noting v, and v, the

inverse of the Permittivity tensor at the domain scale and

at the single crystal scale.

Wi = JE,DS, =1 v, (D, - D;)(D, - D)
_ % v, D, D, + % v,,D;,D;, — v,,D,D;,
_ % v, DD, + % v,y D, D;, — vy, (D}, + D)D),
_ % v, DDy, % v,D,D; ~E,D, (B.2)

The first term of the electrostatic energy is proportional to
the square of the norm of the total electric induction. Weak
heterogeneity of the norm of the dielectric induction is
supposed at the single crystal scale so that this first term
is taken to be constant over a single crystal. Assuming that
the polarisation P, is the main contribution to the non-
dielectric induction D}, the second term is considered to
be proportional to P2, so that it is also a constant within
a single crystal. The electrostatic energy of a ferroelectric
domain is finally written:

WE = _E, - D}, + constant (B.3)
The elastic energy is usually given by:

Wy = % 0y : & (B.4)
It can be transformed as follows:
(J 1 e 1 * *

sz :iaiij sxij = jcflijkl (sii] - sxij)(sdkl - sockl)

1 1 - .
= 2 C‘xijkl 8o 8oy + b Ca‘ijkl sot,-j &y — CO‘fjkl 88y,

Okt

] 1 * k *

= j C‘“ijkl 8%‘ Eoyy + j C“ijk: socij sak, - C“fjkz (gcqj + giij )8

1 1 .

= E C%‘kl sfxij 8oy — j Ciijkl 8%_ S“kl —0y8
Weak heterogeneity of elastic properties and total

strain is supposed at the single crystal scale so that the first

term is taken to be constant over a single crystal. In

(B.5)

"
Lkl
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addition if we assume that the spontaneous ferroelectric
strain & is the main contribution to the inelastic strain
g; at the domain scale, the second term is proportional to
A{fz and is then considered to be constant within a single
crystal. The elastic energy of a ferroelectric domain is final-
ly written:
Wt = —g,

o

: &, + constant (B.6)

Appendix C. Identification of the parameter A

This appendix details the definition of Eq. (19) for the
identification of the parameter A;. It is a translation to the
case of ferroelectrics of the result given in Daniel et al.
(2008) for ferromagnetic materials. The definition of A
is obtained using a simplified description of an - ideal
- unstressed bulk isotropic ferroelectric polycrystal. The
polycrystal microstructure is seen as an assembly of
ferroelectric domains. By opposition to the single crystal,
all the possible orientations in space are considered equi-
probable, and the domains are randomly distributed. The
macroscopic behaviour is then isotropic. In other words
the polycrystal anhysteretic behaviour is obtained by
considering that a polycrystal is a single crystal for which
all space directions are easy axes. For each domain
o, P, = Pya (Eq. (1)) so that the macroscopic polarisation
is written:

:l/padV:PO/faazdrx (C.1)
V Vv o

In the absence of stress, the free energy Eq. (17) reduces to
the term —E-P,. Using spherical coordinates (writing
o = [sin ¢ cos 0, sin ¢ sin 0, cos ¢]) and choosing an elec-
tric field along z-axis (E = Ez), the volume fractions f,
(Eq. (18)) can be written explicitly:

fa= % exp(K cos @) (C.2)

with K = A;PoE and

S= / exp(—-AsW,)do = / exp(AsPoa.E) da
4z sinh(K) -
n K

The macroscopic polarisation (Eq. (C.1)) is then given
by:

(C3)

K cosh(K) — sinh(K)
K sinh(K)

P =P (C4)

This explicit definition of the polarisation curve can be
used to define the initial susceptibility y°:

OP.
~0 z
A - 8E £0 (CS)
We obtain:
. 2 2
oP, _Ap? sinh”(K) — K (C6)

OE 70 KZsinh?(K)

This result gives the definition of the initial susceptibil-
ity when K tends towards 0:

2 = %AsPé (C.7)

The definition of A given by Eq. (19) is then obtained.

Appendix D. Calculation of localisation operators
D.1. Mechanical localisation

The calculation of the localisation tensor B} requires
several intermediate steps. An inclusion problem is consid-
ered first. The Eshelby tensor A, corresponding to this
inclusion problem is calculated (Eshelby, 1957). It depends
on the shape of the inclusion and on the elastic properties
of the infinite medium. The shape of the inclusion is repre-
sentative for the phase distribution (Bornert et al., 2001). If
the grain distribution is isotropic, a spherical inclusion is
chosen. In the case of a self-consistent calculation, the elas-
tic stiffness tensor of the infinite medium is the self-consis-
tent estimate Co. Mura (1982) provides the guidelines for
the practical calculation of the Eshelby tensor. The Hill
constraint tensor C;, is then defined (Eq. (D.1)), from which
the strain locallsatlon tensor A" (Eq. (D.2)) and the stress
concentration tensor 3 are deduced (Eq. (D.3)). T is the
fourth order identity tensor. The incompatibility tensor
L£9 is finally deduced (Eq. (D.4)).

C,=Ca: (N[l - I> (D.1)
A= (¢, +¢) " (Cascy) (D2)
B =C,: A7 Cy! (D.3)
g = (e + c;*l)f1 (D.4)

D.2. Electric localisation

The same approach applies for the electric field localisa-
tion. The depolarising tensor N, is calculated (see for in-
stance Sihvola (1999) or Milton (2002)). The self
consistent estimate €q for the dielectric permittivity is also
used. The intermediate tensor €;, and localisation opera-
tors Aﬁ and Bﬁ are then calculated I is the second order
identity tensor. The incompatibility tensor /\/lf, is finally

deduced Eq. (D.8).

€ =& : (N[l - 1) (D.5)
A=(e1€) :(eate) (D.6)
Bl =€,: A, : &) (D.7)
M= (ex + e;)f1 (D.8)

A detailed explanation for the definition of scale transi-
tion rules in the case of coupled behaviour can be found in
Corcolle et al. (2008).



L. Daniel et al./ Mechanics of Materials 71 (2014) 85-100 97

Appendix E. Role of local elastic anisotropy

The contribution of elastic anisotropy at the single crys-
tal scale to the overall behaviour of ferroelectric ceramics
is often neglected, because of its supposed negligible con-
tribution compared to domain switching (Kamlah et al.,
2005). This appendix aims at a quantitative evaluation of
the influence of local elastic anisotropy for PZT.

We consider the PZT isotropic polycrystal with macro-
scopic Young’s modulus Eq and Poisson’s ratio vq. These
properties can be expressed in terms of shear modulus
o and bulk modulus kq:

Eq

Mo =30 v

3(1 - 2vq)

Several values of local elastic anisotropy can lead to the
same macroscopic properties. We consider a single crystal
with cubic symmetry. The elastic properties of the single
crystal obey the cubic symmetry and are given by two
shear moduli g% and ,ug and a bulk modulus k, (Eq.
(E.2)). The anisotropy ratio r is defined by Eq. (E.3).

:“;a( = %(Clllll - anzz)

and ko = (E.1)

.“2 = szaz3 (E2)
kz = %(Cllm + 2611122)
i
Pt (E3)
1

The effective isotropic elastic properties are then given
by the effective shear modulus jio and bulk modulus kq
(Bornert et al., 2001).

()t 2]
Ha = 342+ 248 + 500

- (E.4)

ka =k, (E.5)

o is the shear modulus of the Hill Constraint tensor
given by Eq. (E.6) (the compressibility k" of the Hill
constraint tensor is given by 3k" = 4u>).

1
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fe(9K™ + 8

EESToN (£6)

2w =

u> and k™ are respectively the shear and bulk modulus
of the isotropic infinite medium chosen for the Eshelby
inclusion problem (Bornert et al., 2001). If the self consis-
tent scheme is chosen, u> = jio and k™ = fcg. Using the
self-consistent model in Eq. (E.4), for given macroscopic
properties Eq and vq, and for a given local anisotropy ratio
r, the local elastic properties are given by:

th =1+ VA)

1 =iy (E7)
ky = ka = 3(15%%)
with
{r=(2r§3)ﬂ*+ (52 Mo £8)
r+3\2 % r+2)2 2 * :
A= (252) 12 + (352) e g

It is then possible to define different sets of local elastic
coefficients (143, ,u!/j, k,) corresponding to different local
anisotropy ratio r but leading to the same macroscopic
elastic properties (g, ko). The influence of local anisotropy
can thus be investigated. In the following figures the vari-
ation Ap of a parameter p as a function of the elastic anisot-
ropy ratio is defined by Eq. (E.9).

_ 1o P —p(r=1)
Ap =100 P =T)

Fig. E.11 plots the variation obtained for the single crys-
tal macroscopic response as a function of the single crystal
elastic anisotropy. The prediction of the macroscopic elec-
tric induction is hardly influenced by the local elastic
anisotropy (Fig. E.11(a)) but the prediction of the macro-
scopic strain is significantly modified. For an anisotropy ra-
tio r =2, the predicted macroscopic strain is 10% higher
compared to the strain obtained under the assumption of
local elastic isotropy (r=1).

Second order moments of stress are not very sensitive
to the level of local anisotropy (Fig. E.12(a)). A few percents
of variation are observed on the parameters Ms3 and M, as

(E.9)
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Fig. E.11. Relative variation of electric induction and strain as a function of the single crystal elastic anisotropy ratio r (E =1 MV/mm, no applied stress).
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Fig. E.12. Relative variation of second order moments and maximum stress as a function of the single crystal elastic anisotropy ratio r (E =1 MV/mm, no

applied stress).

a function of r, meaning that the variability of stress is of
the same order of magnitude whatever the single crystal
anisotropy. But maximum stress values significantly
depends on the local anisotropy as shown in Fig. E.12(b).
For an anisotropy of r=2 the maximum principal stress
is increased by 13% compared to the corresponding
isotropic single crystal.

It can then be concluded that single crystal elastic
anisotropy plays a significant role in the behaviour of fer-
roelectric materials, particularly concerning macroscopic
strain and internal stresses, and should not be neglected
in modelling approaches. Results are presented here in
the absence of applied stress, but it can be shown that
the sensitivity to local elastic anisotropy is even higher
when a macroscopic stress is applied (Daniel et al., 2013).

Appendix F. Saturation polarisation and saturation
ferroelectric strain of isotropic polycrystals

The saturation state of isotropic polycrystals is a partic-
ular state for which the material is a random collection of
single crystals fully polarised along the easy direction clos-
est to the applied electric field. Under such conditions the
saturation polarisation P§' and saturation ferroelectric
strain 3" can be calculated analytically. Uchida and Ikeda
(1967) and Li and Rajapakse (2007) give the solution for
Pg" and 22" under the assumption of uniform stress' and
uniform electric field within the polycrystal.?

For a tetragonal material electrically polarised at satu-
ration, the solutions are given by Eqs. (F.1) and (F.2).

Pt = ¥ (E —tan™! \/i) Py ~ 0.831P,

5 (F.1)

! The macroscopic ferroelectric strain is then the volume average of the
local ferroelectric strain.

2 The macroscopic polarisation is then the volume average of the local
polarisation.

/lsat _ \/§

P _7%;’ ~0.551 %

(F2)

For a rhombohedral material electrically polarised at
saturation, the solutions are given by Egs. (F.3) and (F.4).

Pyt = ? Py ~ 0.866 P (F3)
gt = 2k~ 06378 (F.4)

2 =7

These equations can be used to identify Py and A{f from
macroscopic measurement at saturation - after removing
from the strain measurement the piezoelectric contribu-
tion proportional to the electric field. They should however
be used with care since electric field and stress are not uni-
form within a polycrystal due to material heterogeneity.

These analytical solutions can also be used to define the
minimum number of crystallographic orientations needed
to describe an isotropic polycrystal. For that purpose, and
for several values of the number N of orientations, 500 dif-
ferent random orientation distribution functions were
evaluated. Under uniform stress and uniform electric field
hypotheses, saturation polarisation and saturation ferro-
electric strain have been calculated and compared to the
analytical results of Eqs. (F.1) and (F.2). The results are
plotted in Fig. F.13.

For a number of 100 orientations, the obtained value of
the saturation polarisation lies in a band of +4.4% around
the theoretical value. For N = 500, the band is +1.8% wide,
+1.1% for N=1000 and +0.67% for N = 5000. The discrete
orientation distribution function with 546 orientations ob-
tained by a regular mapping of the crystallographic orien-
tations space (Fig. 3) gives the result with a precision of
0.5%.

The variability is higher for the saturation ferroelectric
strain. For a number of 100 orientations, the obtained va-
lue lies in a band of +16% around the theoretical value.
For N =500, the band is £6.5% wide, +4.0% for N =1000



L. Daniel et al./ Mechanics of Materials 71 (2014) 85-100 99

1.05
546 orientation texture
9& 1 { | WHHTTIIIIIIIITII
oS HMMHHHIII”M“II
0,95 : : : : ‘
0 1000 2000 3000 4000 5000

Number of orientations

(a) Saturation polarisation

1.2 T " . : -
1.1 546 orientation texture
54 mHH-T-H-T-E-I-I-fm-x-m-l-ri
~ 1
P HMMHH“III”II”II
0.9
08 ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000

Number of orientations

(b) Saturation ferroelectric strain

Fig. F.13. Variability obtained on saturation characteristics as a function of the number of orientations in the discrete orientation distribution function (500
random orientation distribution functions for each number N of orientations, the dashed line is the solution obtained with the regular 546 orientation

mapping of the crystallographic orientations space - see Fig. 3).

and +2.5% for N = 5000. The discrete orientation distribu-
tion function with 546 orientations (Fig. 3) gives the result
with a precision of 1.5%.

It can be noticed that the mean value over the 500 ran-
dom distribution functions leads approximately to the cor-
rect value for the saturation polarisation and saturation
ferroelectric strain. A solution to get accurate results would
be to define a great number of random distribution func-
tions, and to calculate the mean value over the obtained re-
sults. However this solution appears to be expensive in
terms of computation time. On the other hand the 546 ori-
entation distribution function provides reasonably accu-
rate results with a limited number of orientations. This is
the reason why it has been used in the calculations pre-
sented in this paper.
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