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High energy x-ray diffraction measurements of lattice strains were performed on a rhombohedral

Lead Zirconate Titanate ceramic (PZT 55-45) under combinations of applied electric field

and compressive stress. These measurements allow the construction of blocking stress curves for

different sets of crystallographic orientations which reflect the single crystal elastic anisotropy. A

micro-mechanical interpretation of the results is then proposed. Assuming cubic symmetry for the

crystalline elastic stiffness tensor and isotropy for the macroscopic elastic properties, the elastic

properties of the single crystal are extracted from the measured data. An anisotropy ratio close to 0.3

is found (compared to 1 for isotropic materials). The high level of anisotropy found in this work

suggests that crystalline elastic anisotropy should not be neglected in the modelling of ferroelectric

materials. VC 2014 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4874222]

I. INTRODUCTION

Piezoelectric ceramics are widely used as the basis for

electromechanical sensors and actuators for control, medical,

electronic, and micro-electromechanical systems (MEMS)

applications. Electromechanical actuators exploit the electric

field-induced strain, which can be represented by the linear

converse piezoelectric effect.1 In many applications, piezo-

electric ceramic materials are subject to relatively high levels

of applied electric field and/or mechanical stress, which

introduce significant nonlinearity into the dielectric, elastic,

and piezoelectric relationships; this nonlinearity arises as a

result of ferroelectric and ferroelastic domain switching.1–4

The macroscopic strain under a given set of external load-

ing conditions can be understood as being due to a complex

combination of the intrinsic piezoelectric effect, the extrinsic

effects resulting from non-180� domain switching, and the de-

velopment of internal inter-granular stresses. Depending on

the composition, some materials can also undergo phase

switching.5,6 With such complex mechanisms underlying their

macroscopic behaviour, ferroelectric materials can neither be

described using simple models nor can they be fully under-

stood on the basis of macroscopic measurements alone.

In recent years, diffraction techniques have been

exploited as a means of evaluating the local lattice strain and

domain switching behaviour of polycrystalline ferroelectric

materials in response to external electric and/or mechanical

loading.7–16 For example, Hall et al. demonstrated that

poling ferroelectric ceramics induces a remanent lattice

strain along certain crystallographic directions, which is

caused by residual stresses associated with ferroelectric do-

main switching.7–9 Pramanick et al. determined the lattice

strains and domain switching behaviour in PZT (lead zircon-

ate titanate) ceramics by conducting in-situ diffraction

experiments in the sub-coercive field region;13,14 these

authors quantified the intrinsic and extrinsic contributions to

the total strain, including both linear and nonlinear terms. It

was shown that inter-granular interactions (i.e., residual

stress) in polycrystalline ferroelectrics can account for a sig-

nificant proportion of the macroscopic electromechanical

response, which distinguishes their behaviour from that of

single crystals. Diffraction methods have also been used to

identify novel mechanisms for electromechanical actuation

in certain lead-free piezoelectric ceramics.15,16

Piezoelectric devices are frequently used under com-

bined electrical and mechanical loading, for example, in

high power acoustic transducers and multilayer stack actua-

tors. For the case of actuators, the performance of a device in

the presence of a restraining force or static stress can be

characterised by measuring the so-called blocking stress

relationship.17 This is achieved by recording the stress-strain

relationships under a given set of static electric field levels.

The blocking stress is, for a given intensity of electric field,

the amplitude of the compressive stress required to cancel

the piezoelectric strain. Although it is known that non-180�

domain switching plays an important role in determining the

electro-mechanical behaviour of actuator materials under

stress,18 there are currently no reports of in-situ measure-

ments of blocking stress curves by diffraction methods.

The present paper presents the results of an in-situ syn-

chrotron x-ray diffraction (XRD) study on a rhombohedral

PZT 55-45 ceramic under combined electrical and mechani-

cal loading. Although much research has been conducted to
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find alternative lead-free compositions, PZT ceramics still

represent the dominant type of piezoceramic in commercial

applications. It is shown that in the case of the material stud-

ied, little domain switching occurs under moderate stress at

constant electric field. This particular observation allows the

identification of the single crystal anisotropy using simple

homogenisation modelling techniques (micro-mechanical

effective medium approaches). The anisotropy ratio obtained

suggests a significant role of local elastic anisotropy in the

development of internal stresses under electro-mechanical

loading.

II. MATERIAL PREPARATION AND EXPERIMENTS

A. Material preparation and macroscopic properties

In this study, the in-situ constitutive behaviour of

Pb0.98Ba0.01(Zr0.55Ti0.45)0.98Nb0.02O3 (PZT 55-45) was char-

acterised during electromechanical loading. The powders

were prepared with the mixed-oxide method using PbO

(Sigma, 99.9% purity), TiO2 (Alfa, 99.8% purity), ZrO2

(TZ-0, Tosoh), Nb2O5 (Sigma, 99.9% purity), and BaCO3

(Alfa, 99.8% purity) as precursors. Prior to sintering, the

powder mixtures were homogenised in isopropyl alcohol

(C3H7OH) in a planetary mill, followed by two calcinations

at 900 �C for 1 h (heating/cooling rate of 5 �C/min). The

powder was milled after each calcination step. The resultant

powder mixture was dried, sieved, and pressed into pellets

and sintered at 1275 �C for 2 h with a heating/cooling rate of

5 �C/min. The mean Ferets diameter of the grain size (dF

6 std. dev.) and theoretical density, determined by the

Archimedes method, were found to be 4.0 6 1.9 lm and

97.1%, respectively. The processing details have been previ-

ously described elsewhere.19 Previous XRD investigations

have revealed that PZT 55-45 is rhombohedral with a minor-

ity tetragonal phase,19 showing the close proximity of this

composition to the morphotropic phase boundary (MPB).

The sintered material was then sectioned and ground into

bars having a final geometry of 1 mm� 1 mm� 3 mm for

synchrotron measurements. Silver electrodes were sputtered

onto opposing 1 mm� 3 mm faces for the application of

electrical fields.

The macroscopic electrical and mechanical constitutive

behaviour was characterised at room temperature for PZT

55-45. Before testing, the samples were thermally depoled to

ensure a virgin state. During electrical testing, a triangular

wave with a maximum electric field of 5 kV/mm and a fre-

quency of 50 mHz was applied to circular samples (4 mm di-

ameter, 1 mm thick). PZT 55-45 was found to display a

coercive field of approximately 0.85 kV/mm as well as a re-

manent strain and polarisation of 0.35% and 42 lC/cm2,

respectively (Fig. 1). The maximum strain at 5 kV/mm was

0.57%, and the observed large field piezoelectric coefficient

( ~d33) was 440 pm/V.

Samples for mechanical testing were approximately

6 mm in height and 5.8 mm in diameter. Prior to testing, the

samples were electrically poled at 120 �C at 2 kV/mm for

5 min, followed by cooling to room temperature with the field

still applied. After the poling process, samples were short-

circuited and a maximum compressive stress of 500 MPa was

applied with a loading/unloading rate of 4 MPa/s at room

temperature, during which the strain and polarisation were

recorded (Fig. 2). From the mechanical tests, PZT 55-45 was

found to have a coercive stress of approximately -45 MPa as

well as a remanent strain and remanent polarisation of 0.64%

and 41 lC/cm2, respectively. The coercive stress corresponds

well to previous investigations.19,20 The mechanically

induced decrease in polarisation closely corresponds to the

observed remanent polarisation during electrical loading. In

addition, previous investigations on the mechanical properties

of PZT 55-45 have shown the remanent strain of unpoled

samples after mechanical compression to be 0.30%,19,20

which when combined with the electrically induced remanent

strain (0.35%) during poling (Fig. 1(b)) shows excellent

agreement with the observed remanent strain during mechani-

cal loading of poled samples (0.64%).

B. Diffraction experiments

The x-ray diffraction experiments were performed at the

ID11 beamline at the European Synchrotron Radiation

Facility (ESRF, Grenoble, France). This is a beamline for

materials science and crystallography, optimised for high

beam energies, and with flexible beam optics.21 For these

measurements, the x-ray photon energy was calibrated by

scanning across the Pt absorption edge at 78.395 keV and

then set to this energy. Two in-vacuum undulators provide

FIG. 1. Macroscopic behaviour of PZT

55-45 at room temperature.
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an intense beam of x-rays. Due to the high x-ray energy, the

wavelength (k¼ 0.1515 � 10�10 m), and the scattering angle

2h (less than 5�) are both small. The measured lattice planes

are then almost perpendicular to the vertical axis z for w¼ 0�

and to the horizontal axis y for w¼ 90�. The direction nor-

mal to the diffracting planes is approximately in the y-z

plane perpendicular to the beam direction x.

Diffraction patterns were recorded using an ESRF

FReLoN CCD camera, coupled to a visible light scintillator

via a fibre optic taper.22,23 This provides an effective pixel

size of around 50 lm, and a field of view of 100� 100 mm2.

Acquisition time was set to 10 s per image. To improve

angular resolution and resolve overlapping diffraction peaks,

the beam was collimated using compound refractive lenses

in the in-vacuum transfocator and slits used to define a beam-

size of 100� 100 lm2 at the sample position. For the same

reason, the distance between sample and detector was

increased to 1 m from the sample and offsets horizontally

and vertically in order to record only a quadrant of the

Debye-Scherrer rings, as shown in Fig. 3. The detector posi-

tion was calibrated by recording diffraction patterns from a

standard Ceria powder. The standard was mounted to the

side of the stress rig so that calibration patterns could be

recorded systematically during the experiment.

The experimental rig (Fig. 4) comprises two metallic

pieces between which the specimen is placed. A steel ball is

used as a ball-and-socket joint to ensure a solely uniaxial

compression state in the specimen. The specimen itself is

surrounded by oil (Fluorinert
TM

FC-70 Electronic Liquid) to

prevent arcing during the application of the electric field. An

electric field up to 4 kV/mm was applied using a high voltage

amplifier (Chevin Research HVA1B). The whole rig was

mounted in a compact MTEST Quattro Materials Testing

System loading device24 to apply the stress.

The experimental procedure was as follows: the sample

was first poled, or repoled, under an electric field of

4 kV/mm. From this poled state, a static electric field E was

applied, modifying the strain of the material through the pie-

zoelectric effect. This change in strain was monitored by

measuring the {200} peak position. Potential domain

switching was monitored by measuring the {111} peaks

positions and intensities. A compressive stress was then

applied to the material, so as to approximately cancel the

piezoelectric strain. During this process, the lattice spacing

dhkl of selected planes was measured in-situ. Both single and

double peak profiles have been fitted using a Matlab proce-

dure based on pseudo-Voigt distribution functions. Upon

releasing the stress, a new cycle was initiated for another

FIG. 3. Schematic view of the measurement configuration. Electric field and

stress are parallel. The incident beam is normal to the electric field. The

camera is placed so as to capture a quadrant of the rings in order to increase

resolution. The results are divided into ten banks denoted 1 to 10, corre-

sponding to an azimuthal angle w from 90� to 0�.

FIG. 2. Macroscopic behaviour of PZT

55-45 under compressive loading-

unloading at room temperature.

FIG. 4. Photo of the measurement rig mounted in the electromechanical

compression device.
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value of the electric field E. The loading sequence is pre-

sented in Fig. 5. In order to maintain contact between the me-

chanical loading frame and the testing rig, a minimum

compressive stress of approximately 5 MPa was maintained

during the whole procedure. The reference state for the experi-

ment is taken to be the state just after poling (points R1 to R5

in Fig. 5). It was found that this reference state was relatively

stable during the experiment, since similar diffraction patterns

were obtained after each repoling procedure.

III. RESULTS

Selected regions of the diffraction patterns obtained dur-

ing the experiment are presented in Figs. 6 and 7. The single

{200} peak and split {111} peaks are typical for a rhombohe-

drally distorted perovskite ferroelectric.9 From the difference

in position between (111) and (�111) peaks, domain switching

can be estimated to generate a maximum strain of approxi-

mately 0.7% along h111i directions. Previous laboratory dif-

fraction measurements on the same material19,20 reported a

slight distortion of the diffraction profile attributed to the pres-

ence of a minority tetragonal phase. This distortion has not

been observed here. This could be due to the difference in re-

solution between synchrotron and laboratory XRD apparatus

or to a slight difference in composition between the bulk

(sampled by synchrotron x-rays) and the surface (sampled by

laboratory x-rays) for this material. The relative heights of the

{111} peaks indicate that the specimen was already in a well-

FIG. 5. External electro-mechanical loading during the in-situ experiment: electric field (top) and compressive stress (bottom).

FIG. 6. Diffraction patterns for the first

electric field loading (points A to B in

Fig. 5): {111} and {200} peaks for

w ¼ 0� and w ¼ 90�. The dominance

of the (111) peak for w¼ 0 and the

(�111) peak for w¼ 90� confirm that

the material is initially in a well-poled

state. The profiles are given for E¼ 0,

1, 2, 3, and 4 kV/mm.
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poled state at the start of the experiment, with the (111) peak

being dominant for w¼ 0� and the (�111) peak for w¼ 90�.
The position of the {200} peak was also dependent on the

grain orientation, indicating the occurrence of a tensile inter-

granular residual stress for w¼ 0� and a compressive inter-

granular residual stress for w¼ 90�. These observations are

consistent with those reported in the previous publications.7,9

For w¼ 0�, increasing electric field strength caused a

further shift of the {200} peak to smaller 2h values, caused

by an increasing tensile lattice strain, while the (111) peak

intensity was significantly enhanced relative to that of the

(�111) peak due to ferroelectric domain switching towards the

poling direction (Fig. 6). The opposite trends were observed

for w¼ 90�, indicating the development of a compressive

strain and ferroelectric domain switching away from the

transverse directions.

In contrast, the application of a uniaxial compressive

stress along the macroscopic polar axis led to a shift of the

(200) peak to higher 2h values caused by compressive strain

for w¼ 0� (Fig. 7). In this case, there was only a slight

change in the relative intensities of the (111) and (�111)

peaks, suggesting that there was a relatively small amount of

ferroelastic domain switching for applied stresses in the

range 5 to 35 MPa, particularly when a static electric field

was also present.

The evolution of the {200} and {111} lattice spacings dur-

ing the course of the experiment is presented in Figs. 8 and 9,

respectively. Here, d200 is simply the inter-planar spacing for

the {200} planes, while d111 is the weighted average of the lat-

tice spacings for the (111) and (�111) peaks; therefore, it should

be noted that d111 incorporates a dependence on the degree of

ferroelectric domain switching in addition to the true lattice

strain. The changes in d200 as a function of the frame number,

presented in Fig. 8, correlate well with the variations in applied

electric field and compressive stress, plotted in Fig. 5. For

w¼ 0�, the initial positive excursion between frames 0 and 30

FIG. 7. Diffraction patterns for the last

stress loading (points C to D in Fig. 5):

{111} and {200} peaks for w ¼ 0� and

w ¼ 90�. The patterns show very little

domain switching under stress. The

profiles are given for r¼ 4.7, 11, 17,

23, 29, and 35 MPa.

FIG. 8. Evolution of d200 during the

in-situ experiment, w¼ 0� (top) and

w ¼ 90� (bottom).
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corresponds to the first electrical poling procedure, while the

subsequent negative excursion between frames 20 and 60 cor-

responds to the application of the first compressive stress cycle.

As the experiment progressed, the starting point for each stress

cycle gradually shifted upwards as a result of the increasing

static electric field and the negative excursions grew in magni-

tude due to the gradual application of higher ultimate stress lev-

els. The increase in d200 as a function of the electric field is

predominantly due to the piezoelectric effect, although it also

includes a contribution from ferroelectric domain switching,

due to the occurrence of residual stress.9 For w¼ 90�, the

changes in d200 were similar to those described above but oppo-

site in sign. This is expected since the sign of the lateral strains

is generally opposite to those of the longitudinal strains.

The results can also be plotted in terms of blocking

stress curves. The lattice spacings d200 and d111 are plotted as

a function of the applied, macroscopic stress, as shown in

Fig. 10 for w¼ 0�. For a given applied electric field, the

stress-strain curves are approximately linear. The corre-

sponding fitted lines are shown in the figures. To a first

approximation, the slope of the line can be considered inde-

pendent of the electric field level.

The slope of the blocking stress curves, however, is a

function of the azimuthal angle w. An illustration is given in

Fig. 11(a) for d200 and in Fig. 11(b) for d111 for an electric

field of 2.5 kV/mm. As expected, for orientations approxi-

mately aligned with the loading and field axis (w ¼ 0�), d200

decreases with the application of compressive stress, while it

increases for orientations close to 90�. As will be explained

in Sec. IV, the evolution of this slope can be used to deter-

mine the elastic properties and hence anisotropy of the single

crystal.

IV. DISCUSSION

As a first assessment of elastic anisotropy, the local strain

can be plotted as a function of the applied stress. Fig. 12 shows

the local strain obtained from d200 measurements for w¼ 0�

(black) and the local strain obtained from d111 measurements

for w¼ 0� (red). The different symbols denote different elec-

tric field levels. It can be seen that the strain is essentially lin-

ear as a function of the applied stress. The slope of each curve

represents an “apparent” Young modulus, often called the dif-

fraction elastic constant.25 It depends slightly on the electric

field level, but the h111i directions are always stiffer than the

h100i directions. Neglecting this slight variation, the average

diffraction elastic constants are 49 and 29 GPa, respectively. It

must be noted that this uniform stress assumption (Reuss

FIG. 10. Analysis of diffraction pro-

files: blocking stress curves obtained

for w ¼ 0� at several levels of applied

electric field. Experimental measure-

ments (markers) and corresponding

linear fitting (lines). The horizontal

dashed line shows the prestress level to

maintain contact between the mechani-

cal loading frame and the testing rig.

FIG. 9. Evolution of d111 during the

in-situ experiment, w¼ 0� (top) and

w ¼ 90� (bottom).
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approximation) is the simplest approach to the elastic proper-

ties of the single crystal, since it neglects stress heterogeneity

within the material. It can provide, however, a first estimate of

the elastic behaviour. The anisotropy level obtained is very

significant. In order to obtain a more accurate estimate of crys-

talline elastic anisotropy, the Reuss assumption is discarded in

the following discussion and an analysis based on more appro-

priate micro-mechanical tools is proposed.

In order to analyse the data, the sequence of the experi-

ment is described hereafter and illustrated in Fig. 13.

Electric field, total induction, purely dielectric induc-

tion, piezoelectric induction, and polarisation are denoted as

E, D, De, Dpz, and P, respectively. They abide by the relation

D ¼ De þ Dpz þ P: (1)

Stress, total strain, elastic strain, piezoelectric strain,

and ferroelectric strain are denoted as r, e, ee, epz, and e f e,

respectively, and abide by the relation

e ¼ ee þ epz þ ef e: (2)

The linear elastic, dielectric, and piezoelectric constitu-

tive laws are written using the compliance tensor S, the per-

mittivity tensor �, and the piezoelectric tensor dpz, where the

subscript v represents the grain scale and the subscript X rep-

resents the macroscopic scale.

The relationship between the macroscopic stress rX and

the local stress rv is obtained using a micro-mechanical

approach.26 The scale transition rule is given by

rv ¼ Br
v : rX þ Lr

v : e
f e
X þ e

pz
X � ef e

v � epz
v

� �
: (3)

Similarly, the relationship between the macroscopic

electric field EX and the local electric field Ev is given by

Ev ¼ AE
v : EX þME

v : PX þ D
pz
X � Pv � Dpz

v

� �
: (4)

The practical calculation of the localisation operators

Br
v , Lr

v , AE
v , andME

v is summarised in Appendix A.

A. Reference state (state 0)

This state is obtained after poling or repoling of the sam-

ple and is the reference state. It was obtained under a fixed

compressive preload of approximately 5 MPa, which was

FIG. 12. Local strain (calculated with reference to the lattice spacing after

poling) versus applied stress. The results are for w¼ 0�. Different markers

denote different electric field levels (�, �, �, � and � denote 0.5, 1, 1.5,

2, and 2.5 kV/mm, respectively). The corresponding apparent Young mod-

uli—or diffraction elastic constants—along h111i and h100i directions

underestimate the elastic anisotropy because the applied stress is assumed

uniform within the material in this figure (Reuss assumption). FIG. 13. Schematic view of the experimental procedure.

FIG. 11. Analysis of diffraction pro-

files: blocking stress curves obtained

for banks 1 to 10 (corresponding to

w ¼ 90� to 0�) for an applied electric

field of 2.5 kV/mm. Experimental

measurements (markers) and corre-

sponding linear fitting (lines). For the

{200} blocking stress curves (a),

the sign of the slope changes between

w ¼ 60� and w ¼ 70�, while for the

{111} blocking stress curves (b), it

changes between w ¼ 70� and

w ¼ 80�.
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applied in order to ensure contact between the mechanical

loading frame and the testing rig.

B. Application of a constant electric field (state 1)

A static electric field EX is applied. It is assumed here

that the application of this electric field induces little domain

switching, which is supported for this experiment by Fig. 14

that shows the evolution of the volume fractions of domains

with polarisation perpendicular to the diffracting plane

(111). The results are plotted for w¼ 0�, 30�, 40�, 50�, 60�,
and 90�. This volume fraction, also noted Rf111g,

7,9 is de-

fined by comparison of the (111) and (�111) peak intensities

(fv ¼ Rf111g ¼ Ið111Þ=ðIð111Þ þ Ið�111ÞÞ). For w¼ 0�, fv is very

high, and on the contrary it is almost zero for w¼ 90� show-

ing that the material was efficiently poled. The volume frac-

tion remains essentially stable irrespective of the electric field

subsequently applied, meaning that little further non-180� do-

main switching occurs when applying the electric field.

C. Application of stress (state 2)

Maintaining the electric field EX constant, a uniaxial

compressive stress rX is progressively applied. During this

process, it is assumed that, for this material and this range

of applied stress, little domain switching is generated by

the application of stress. This assumption is supported

again by the evolution of the volume fractions of domains

with polarisation perpendicular to the diffracting plane

(111) as illustrated in Fig. 15. A slight diminution of the

volume fraction while the stress increases can be observed

for w¼ 0�, indicating a stress-induced depoling for this ori-

entation. This domain switching under stress, combined

with the residual domain switching observed under electric

field for w¼ 0� in Fig. 14, is probably responsible for the

variations observed in Fig. 12 between the stress-strain

curves at different electric field levels. This amount of do-

main switching is, however, small and concerns a limited

number of orientations close to w¼ 0�. It will be neglected

as a first approximation.

D. Evolution of lattice spacing dhkl as a function of
stress and electric field

Let z represent the direction of the applied compression,

and u represents the unit vector normal to the considered

{hkl} planes. The strain ehkl along direction u is written as
tu : ev : u, or

ehkl ¼
dhkl � d0

hkl

d0
hkl

; (5)

where d0
hkl is a material constant that refers to the original lat-

tice spacing in the cubic (paraelectric) stress-free reference

state.

According to the assumptions made to describe the dif-

ferent stages of the experiment, the local strain ev at the grain

scale can be calculated (see Appendix B). It is given by

ev ¼ K0 þK1ðEXÞ þK2ðrXÞ; (6)

with

FIG. 14. Volume fraction of domains with polarisation perpendicular to the

diffracting plane (111) at stage 1 for several levels of applied electric field

and different azimuthal angles w. This shows that the volume fractions of

ferroelectric domains remain essentially stable when the electric field is

applied on the poled sample.

FIG. 15. Volume fraction of domains with polarisation perpendicular to the diffracting plane at stage 2. The results are plotted as a function of the applied

stress for several levels of applied electric field and different azimuthal angles w. This shows that the volume fractions of ferroelectric domains remain essen-

tially stable when the stress is applied on the poled sample and this is for all the electric field levels.
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K0 ¼ ef e
v þ Sv : Lr

v : ðef e
X � ef e

v Þ
� �

K1ðEXÞ ¼ tdpz
v :EX þ Sv : Lr

v : ðtdpz
X�tdpz

v Þ:EX

� �� �
K2ðrXÞ ¼ Sv : Br

v : rX
� � :

8>>><
>>>:

(7)

We then have

dhkl

d0
hkl

¼ 1þ tu :K0 : uþ tu :K1ðEXÞ : uþ tu :K2ðrXÞ : u:

(8)

At constant stress, the evolution of the lattice parameter

with electric field is then a linear function of the piezo-

electric and elastic parameters of the single crystal. At

constant electric field, the evolution of the lattice parameter

with stress is a linear function of the elastic parameters of

the single crystal. The latter are the blocking stress curves

(Figs. 10 and 11).

E. Blocking stress curves

The blocking stress curve plots the variation of lattice

spacing dhkl from state 1 to state 2 as a function of the ampli-

tude of the applied uniaxial compressive stress rX. It is thus

a plot of tz : rX : z as a function of d0
hklð1þ tu : ev : uÞ and can

be used to determine the single crystal stiffness tensor. The

slope 1=p of the blocking stress curves is given by

p ¼ @dhkl

@r
¼ d0

hkl
tu : Sv : ðBr

v : rXÞ
� �

: u: (9)

The applied stress being a uniaxial compression of am-

plitude r along z, it can be expressed as

rX ¼ r z� z: (10)

We then have

p ¼ d0
hkl

tu : Sv : ðBr
v : z� zÞ

� �
: u: (11)

For a given crystallographic orientation and for a given pro-

jection direction u (corresponding to a given plane fhklg), this

slope is a constant. This corresponds well with experimental

results showing that blocking stress curves for a given orienta-

tion are parallel lines (Fig. 10), but that the slope depends on

the orientation (Fig. 11). If we assume that the elastic coeffi-

cients show a cubic symmetry and are uniform within a grain,

and that the polycrystal is macroscopically isotropic, analyti-

cal solutions can be found for this expression of the slope.

The details of calculation are given in Appendix C.

Two important results are obtained when considering

the diffracting planes {200} and {111}. In this case, p is a

linear function of the square cosine of the azimuthal angle w.

The expression of these slopes are given by

p200 ¼ a200 þ b200 cos2w; (12)

p111 ¼ a111 þ b111 cos2w; (13)

with

a200 ¼ d0
200

1

9k
� lX þ l�

6lXðla þ l�Þ

� �

b200 ¼ d0
200

lX þ l�

2lXðla þ l�Þ

a111 ¼ d0
111

1

9k
� lX þ l�

6lXðlb þ l�Þ

� �

b111 ¼ d0
111

lX þ l�

2lXðlb þ l�Þ

;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(14)

where la, lb, and k are the two shear moduli and the bulk

modulus of the single crystal (assuming a cubic symmetry),

lX is the shear modulus of the polycrystal that can be

obtained from the resolution of a homogenisation problem

(assuming a macroscopic isotropic elastic behaviour), and l�

is the shear modulus of the Hill constraint tensor in this

homogenisation problem (see Appendix C). The azimuthal

angles wv
200 and wv

111 for which {200} and {111} blocking

stress curves are vertical lines can be easily determined from

(12) and (13)

wv
200 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� a200

b200

r
; (15)

wv
111 ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� a111

b111

r
: (16)

The experimental curves of p200 and p111 as a function

of cos2w are given in Fig. 16. For a given electric field level,

it is verified with very good accuracy that p200 and p111 are

linear functions of cos2w, but a slight dependence on the

electric field is obtained as illustrated in Fig. 17. The hori-

zontal line represents the average values for a200, b200, a111,

and b111. This dependence on electric field can probably be

attributed to the residual domain switching neglected in the

modelling process.

The identified values for a200, b200, a111, and b111 are

given in Table I. The corresponding values for wv
200 and wv

111

are also reported. They are consistent with the results of

Fig. 11.

F. Practical identification of single crystal elastic
coefficients

Once the parameters a200, b200, a111, and b111 have been

identified (Table I), a procedure to identify the single crystal

elastic coefficients can be defined from the set of equations

(14). In the reference cubic state, d0
hkl is defined by

d0
hkl ¼

a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p ; (17)

where a0 is the lattice parameter of this reference cubic state.

It is then easily shown that

d0
200

d0
111

¼
ffiffiffi
3
p

2
; (18)
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so that the following relation must be verified by the identi-

fied parameters of Table I:

a200 þ b200=3

a111 þ b111=3
¼

ffiffiffi
3
p

2
: (19)

In the case studied here, the ratio is found to be equal to

0.87, corresponding to an error less than 0.5%.

Moreover, assuming that the transformation from the

initial cubic state to the ferroelectric state is isochoric, the

lattice parameter a0 can be defined as

a0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
cos2d3
p

(20)

for rhombohedral materials (where a is the lattice parameter

and d is the standard distorsion angle of the rhombohedral

phase) or as

a0 ¼
ffiffiffiffiffiffiffi
ac23
p

(21)

for tetragonal materials (where a and c are the standard lat-

tice parameters of the tetragonal phase). Note that the con-

stant volume assumption is only used as an approximation

for the paraelectric to ferroelectric transformation in order to

define the lattice parameter a0. In the remainder of the paper,

the sample volume is not constant, notably due to the signifi-

cant elastic contribution.

The ratio b111=b200 provides an estimate of the single

crystal anisotropy. In actual fact, it will systematically under-

estimate the single crystal anisotropy since l� is always posi-

tive. It is recalled that single crystal isotropy is found for

la ¼ lb ffiffiffi
3
p

2

b111

b200

¼ la þ l�

lb þ l�
<

la

lb

if la > lb;

orffiffiffi
3
p

2

b111

b200

¼ la þ l�

lb þ l�
>

la

lb

if la < lb:

(22)

For the material studied here, it is found that the anisotropy

ratio is lower than 0.566, indicative of very significant ani-

sotropy (see Ref. 26).

Given the lattice parameter a0 for the reference state, the

elastic coefficients of the single crystal can be identified.

Since the expressions of lX and l� depend on la, lb, and k,

a simple fixed point algorithm can be developed, provided in

Appendix D. The solution obtained for the material studied

in this paper is given in Table II. The calculation has been

made for a0¼ 3.9 Å. According to Fig. 8, a0 could lie

between 3.87 and 3.90 Å, but the results show very little sen-

sitivity to a0 in this range. The error bars given in Table II

TABLE I. Values of a200, b200, a111, and b111 identified from the slopes of

the blocking stress curves obtained from the high energy x-ray diffraction

experiments. Unit: m2�s2�kg�1. The calculated azimuthal angles wv
200 and

wv
111 for which {200} and {111} blocking stress curves are vertical lines are

also reported.

Parameter a200 (10�21) b200 (10�21) a111 (10�21) b111 (10�21) wv
200 wv

111

Value �1:860:3 9:461:4 �0:560:2 6:161:0 63� 72�

FIG. 16. Slope of the blocking stress

curves as a function of cos2 w and cor-

responding linear fitting. Markers �,

�, �, �, and � denote results at 0.5,

1, 1.5, 2, and 2.5 kV/mm, respectively.

FIG. 17. Values identified for a200, b200, a111, and b111 as a function of the

applied electric field (unit : m2 � s2 � kg�1). The values were obtained from

the linear fitting of p200 and p111 as a function of cos2 w.
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have been obtained by considering independently the results

from each value of the electric field. It is recalled that the

results were obtained assuming negligible domain switching

during the blocking stress experiment. It is worth noting that

if such domain switching under stress was significant, it would

affect mostly the {111} strain curves for a rhombohedral per-

ovskite ferroelectric and would tend to make them appear

more compliant than they are. Consequently, neglecting the

domain switching contribution tends to underestimate the

crystalline elastic anisotropy in the present case.

The model, in a simplified version, could also be used to

identify the material properties directly from measurements

on single crystals. Single crystals, however, can be difficult to

obtain. The idea here is to show that the synthesis of single

crystals can be avoided by combining in-situ measurements

on polycrystals and appropriate micro-mechanical modelling.

The anisotropy ratio of 0.30 6 0.04 found for PZT 55-45

is very significant and deviates further from the isotropic value

of 1 than that of pure iron (0.41) or nickel (0.40), for example.

This questions most of the modelling approaches for ferroelec-

tric behaviour that neglect this local elastic anisotropy.27,28

Indeed, as shown in the previous studies,26,29 a strong local an-

isotropy has a significant impact both on the macroscopic

response and on the development of internal stresses in ferro-

electric materials under electromechanical loading.

V. CONCLUSION

High energy x-ray diffraction experiments have been car-

ried out on a rhombohedral PZT piezoelectric ceramic. In-situ
blocking stress curves have been obtained from these measure-

ments for the lattice spacings d200 and d111. These blocking

stress curves were found to be approximately linear. Using a

micromechanical analysis and experimental data in which little

non-180� domain switching occurred, the single crystal elastic

coefficients have been determined. The crystal elastic behav-

iour appears to be highly anisotropic. This local anisotropy

plays a significant role in the development of internal stresses

in ferroelectric ceramics and should, therefore, be introduced

when modelling ferroelectric behaviour. The local elastic coef-

ficients derived from this approach can be used to evaluate

other practical cases where non-180� domain switching is more

significant. In such a case, a more complicated modelling

approach based on a micromechanical analysis of domain

switching processes26 would be necessary. In a similar manner,

the anisotropic piezoelectric coefficients could be obtained by

studying “blocking field” experiments under static stress.
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APPENDIX A: CALCULATION OF THE LOCALISATION
OPERATORS

1. Mechanical localisation operators

The calculation of the localisation tensor Br
v requires

several intermediate steps. The calculation is based on the re-

solution of an Eshelby’s inclusion problem. The Eshelby ten-

sor N v corresponding to the inclusion problem is calculated

first.33 It depends on the shape of the inclusion and on the

elastic properties of the infinite medium surrounding the

inclusion. The shape of the inclusion is representative of

the phase distribution.30 For polycrystals, a phase can be

defined as the set of grains having a specific crystallographic

orientation. If the spatial distribution of a phase is isotropic,

a spherical inclusion is chosen. In the case of a self-

consistent calculation, the elastic stiffness tensor of the

infinite medium is the self-consistent estimate ~CX. The

monograph by Mura34 provides the guidelines for the practi-

cal calculation of the Eshelby tensor N v. The Hill constraint

tensor C�v is then defined (A1), from which the strain localisa-

tion tensor Ar
v (A2) and the stress concentration tensor Br

v
are deduced (A3). I is the fourth order identity tensor. The

incompatibility tensor Lr
v is finally calculated (A4)

C�v ¼ ~CX : N v
�1 � I

� �
; (A1)

Ar
v ¼ Cv þ C�v

� ��1 : ~CX þ C�v
� �

; (A2)

Br
v ¼ Cv : Ar

v : ~CX
�1; (A3)

Lr
v ¼ C�1

v þ C�v�1
� ��1

: (A4)

2. Electric localisation operators

The same approach applies for the electric field localisa-

tion. The depolarising tensor Nv is calculated first (see, for

instance, the monographs by Sihvola35 or Milton36). The self-

consistent estimate ~�X for the dielectric permittivity is also

used. The intermediate tensor ��v and localisation operators AE
v

and BE
v are then calculated. I is the second order identity ten-

sor. The incompatibility tensorME
v is finally calculated (A8)

��v ¼ ~�X : Nv
�1 � I

� �
; (A5)

AE
v ¼ �v þ ��v

� ��1 : ~�X þ ��v
� �

; (A6)

TABLE II. Elastic coefficients of PZT 55-45 single crystal.

Parameter a0 k la lb la=lb E200=E111

Value 3.9 16:363:2 6:861:4 22:763:5 0:3060:04 0:2560:04

Unit Å GPa GPa GPa … …
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BE
v ¼ �v : AE

v : ~�X
�1; (A7)

ME
v ¼ �v þ ��v

� ��1: (A8)

A detailed explanation for the definition of scale transition

rules in the case of coupled behaviour can be found in

Ref. 32.

APPENDIX B: CALCULATION OF THE LOCAL STRAIN
AT THE GRAIN SCALE AS A FUNCTION OF STRESS
AND ELECTRIC FIELD

In this appendix, we derive the expression of the local

strain tensor ev at the grain scale as a function of the macro-

scopic applied stress rX and electric field EX. We refer to the

loading sequence defined in Sec. IV (Fig. 13) and make use

of the decomposition (2), of the single crystal constitutive

law and of the scale transition rule (3)

ev ¼ ef e
v þ epz

v þ ee
v

¼ ef e
v þ tdpz

v :Ev þ Sv : rv

¼ ef e
v þ tdpz

v :Ev

þSv : Br
v : rX þ Lr

v : ðef e
X þ e

pz
X � ef e

v � epz
v Þ

� �
; (B1)

which can be written in the following form:

ev ¼ ef e
v þ Sv : Lr

v : ðef e
X � ef e

v Þ
� �

þ tdpz
v :Ev þ Sv : Lr

v : ð td
pz
X :EX � tdpz

v :EvÞ
� �

þSv : Br
v : rX

� �
: (B2)

If we assume that no domain switching has occurred during the

process, the first line of (B2) is a constant from stage 0, noted

as K0 and assumed independent of both stress and electric field.

It is assumed that the electric field is uniform within the mate-

rial (Ev ¼ EX), which means that the second line of (B2) is a

linear function of the applied electric field EX, noted as

K1ðEXÞ. The third line of (B2) is a linear function of rX, noted

as K2ðrXÞ. The expression of ev is then given by

ev ¼ K0 þK1ðEXÞ þK2ðrXÞ; (B3)

with

K0 ¼ ef e
v þ Sv : Lr

v : ðef e
X � ef e

v Þ
� �

K1ðEXÞ ¼ tdpz
v :EX þ Sv : Lr

v : ðtdpz
X�tdpz

v Þ:EX

� �� �
K2ðrXÞ ¼ Sv : Br

v : rX
� � :

8>>><
>>>:

(B4)

APPENDIX C: CALCULATION OF THE SLOPE OF THE
BLOCKING STRESS CURVES

The slope 1=p of a blocking stress curves is given by

(11) recalled hereafter

p ¼ d0
hkl

tu : Sv : ðBr
v : z� zÞ

� �
: u: (C1)

The objective of this appendix is to express p as a func-

tion of the elastic parameters of the single crystal thanks to

an explicit calculation of Br
v . For the following, it is conven-

ient to introduce the base tensors (J ,K) for isotropic fourth

rank tensors and the base tensors (J ,Ka,Kb) for cubic fourth

rank tensors31 (d is the Kronecker symbol)

J ijkl ¼
1

3
dijdkl

I ijkl ¼
1

2
ðdikdjl þ dildjkÞ

Pijkl ¼ dijdkldik

Ka ¼ P � J
Kb ¼ I � P
K ¼ Ka þKb:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(C2)

We assume that the elastic symmetry is cubic at the single crys-

tal scale. The elastic stiffness tensor Sv can then be written

Sv ¼
1

3k
J þ 1

2la

Ka þ
1

2lb

Kb; (C3)

where k is the bulk modulus, la and lb are the two shear

moduli that describes the crystal anisotropy (the anisotropy

ratio can be defined as la=lb). These coefficients can also be

defined from the stiffness tensor Cv of the single crystal

la ¼
1

2
ðCv1111

� Cv1122
Þ

lb ¼ Cv2323

k ¼ 1

3
ðCv1111

þ 2Cv1122
Þ:

8>>>>><
>>>>>:

(C4)

The macroscopic elastic compliance tensor SX is taken

to be isotropic. It is written

SX ¼
1

3kX
J þ 1

2lX
K ; (C5)

where kX and lX are, respectively, the bulk and shear modu-

lus of the isotropic polycrystal. They can be obtained from a

macroscopic measurement. They relate to Young’s modulus

EX and Poisson’s ratio �X by

lX ¼
EX

2ð1þ �XÞ
and kX ¼

EX

3ð1� 2�XÞ
: (C6)

The macroscopic elastic parameters can also be obtained

from an homogenisation approach.30 kX and lX are then

given by

lX ¼
5ðla þ l�Þðlb þ l�Þ

3la þ 2lb þ 5l�
� l� and kX ¼ k: (C7)

This expression introduces the—isotropic—Hill tensor C�
(Ref. 30)

C� ¼ 3k�J þ 2l�K; (C8)
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with

2l� ¼ l1ð9k1 þ 8l1Þ
3ðk1 þ 2l1Þ and 3k� ¼ 4l1; (C9)

where l1 and k1 are the properties used for the infinite me-

dium for the Eshelby’s inclusion problem in the Hill

approach. The self-consistent method being chosen in the

following, we will use l1 ¼ lX and k1 ¼ kX.

The localisation operator Br
v is then defined by

Br
v ¼ Cv : Ar

v : C�1
X ; (C10)

with

Ar
v ¼ Cv þ C�

� ��1
: CX þ C�ð Þ: (C11)

All calculations done, we obtain

Br
v ¼ J þ

laðlX þ l�Þ
lXðla þ l�Þ Ka þ

lbðlX þ l�Þ
lXðlb þ l�Þ Kb: (C12)

The expression of the slope p can then be developed,

and leads to (C13)

p ¼ d0
hkl

1

9k
þ lX þ l�

2lXðla þ l�Þ ðu
2
i z2

i � 1=3Þ
�

þ lX þ l�

2lXðlb þ l�Þ ð1� dijÞuiujzizj

�
: (C13)

In this expression, u is the unit vector normal to the dif-

fracting plane {hkl}, and z is the direction of the applied

stress. In a coordinate system (u,v,w) attached to the diffract-

ing plane (Fig. 18), z can be expressed

z ¼ cos w uþ sin w cos h vþ sin w sin h w: (C14)

In the general case, the expression for p will depend not

only on the azimuthal angle w but also on the rotation angle h
(several crystallographic orientations correspond to a given

diffracting plane, and the stress is not uniform within all these

orientations). However, for two particular diffracting planes,

{200} and {111}, this angle h is eliminated in the equations.

1. {200} diffraction

If {200} is the diffracting plane, a possible choice for

(u,v,w) is

u ¼
1

0

0

						 ; v ¼
0

1

0

						 ; w ¼
0

0

1

						 ; (C15)

leading to

p200 ¼ d0
200

1

9k
þ lX þ l�

2lXðla þ l�Þ ðcos2w� 1=3Þ
� �

: (C16)

It is worth noting that if a uniform stress assumption is

used (Reuss assumption), l� ¼ 0 and the expression reduces to

pR
200 ¼ d0

200

1

9k
þ 1

2la

ðcos2w� 1=3Þ
� �

: (C17)

2. {111} diffraction

If {111} is the diffracting plane, a possible choice for

(u,v,w) is

u ¼ 1ffiffiffi
3
p

1

1

1

						 ; v ¼ 1ffiffiffi
2
p

1

�1

0

						 ; w ¼ 1ffiffiffi
6
p

1

1

�2

						 ; (C18)

leading to

p111 ¼ d0
111

1

9k
þ lX þ l�

2lXðlb þ l�Þ ðcos2w� 1=3Þ
� �

: (C19)

Again it is noteworthy that if a uniform stress assump-

tion is used (Reuss assumption), l� ¼ 0 and the expression

reduces to

pR
111 ¼ d0

111

1

9k
þ 1

2lb

ðcos2w� 1=3Þ
� �

: (C20)

Expressions (C16) and (C19) can be used to identify the

elastic parameters k, la, and lb of the single crystal.

APPENDIX D: FIXED POINT ALGORITHM FOR THE
DETERMINATION OF THE SINGLE CRYSTAL ELASTIC
COEFFICIENTS

The algorithm for the determination of la, lb, and k
from (14) and the knowledge of the parameter a0 can be

defined as follows.

• Identification of a200, b200, a111, and b111 from the

Blocking stress curves.
• Determination of d0

200 and d0
111 from a0 (17).

• Initial guess for lX and l� (from the approximate knowl-

edge of the macroscopic coefficients, and using (C9)).
• Determination of k:

k ¼ 2

9
a200 þ b200=3

d0
200

þ a111 þ b111=3

d0
111

 ! : (D1)

FIG. 18. Schematic view of the angles and coordinate systems used in the

calculation.
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• Initialisation: f0 ¼ 10�3, f ¼ 1, lr
a ¼ 1, lr

b ¼ 1.
• While f > f0

(i) Calculation of la:

la ¼
d0

200

2b200

1þ l�

lX

� �
� l�: (D2)

(ii) Calculation of lb:

lb ¼
d0

111

2b111

1þ l�

lX

� �
� l�: (D3)

(iii) Calculation of the convergence indicator:

f ¼ 100� jla � lr
aj

lr
a

þ 100� jlb � lr
bj

lr
b

: (D4)

(iv) lr
a ¼ la, lr

b ¼ lb.

(v) Updating of lX (C7) and l� (C9).
• Solution (la, lb, k).
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