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Effect of Stress on Switched Reluctance Motors: A Magneto-Elastic
Finite-Element Approach Based on Multiscale Constitutive Laws
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The design of electromagnetic devices submitted to high mechanical stress is a growing issue and requires consequently appropriate
modeling tools. We propose in this paper to implement a multiscale model for magneto-elastic behavior into a finite-element code. The
2-D magneto-elastic constitutive law is derived from a multiscale model based on a local energetic approach. The method is applied
to study the effect of stress on the magnetic behavior of a switched reluctance motor. This work provides a finite-element tool for the
modeling of the effect of multiaxial stress on electrotechnical devices.

Index Terms—Effect of stress, electrical machines, finite-element method, magneto-elasticity, multiscale modeling.

1. INTRODUCTION

AGNETIC materials in electrical machines or actua-
M tors are submitted to multiaxial mechanical loadings.
These stress states can be inherited from forming and assembly
processes (cutting, stacking, welding, etc.) or appear in use
(magnetic forces, inertial forces, etc.). On the other hand,
stress significantly modifies the magnetic and magnetostrictive
behavior [1]. The increase of manufacturing constraints (for
cost reduction) and operating constraints (for cost reduction or
compacity purpose) emphasizes the need for appropriate cou-
pled modeling tools in the design of electromagnetic systems.
One possible choice is the introduction of coupled constitu-
tive laws into finite-element modeling. Unfortunately, most
magneto-elastic models are restricted to uniaxial mechanical
loadings (e.g., [2]-[5]). Some authors proposed to define a
magneto-elastic equivalent stress, namely a (fictive) uniaxial
stress that would change the magnetic behavior in a similar
manner than the multiaxial one [6]-[10]. These approaches
can be suited for certain particular multiaxial configuration of
stress but did not succeed in giving a general description of
the effect of stress on magneto-elastic behavior. Fully multi-
axial magneto-elastic models, based on an energetic approach,
have been proposed for single crystals [11] and for single and
poly-crystalline media, including the effect of crystallographic
texture [12]-[14]. The implementation of the latter models
into a finite-element simulation still leads to dissuasive com-
putational times for engineering design applications. For an
application of single crystals under uniaxial loadings, Graham
et al. [15] proposed a finite-element code using look-up text
files containing scalar values of magnetostriction and magnetic
field depending on stress and magnetic induction amplitudes
(assuming the uniaxial stress to be parallel to the magnetic
induction). They used the Armstrong model [16] to build these
files. If a more general configuration is to be treated, such as a
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multiaxial stress combined to a magnetic field not aligned with
a principal stress direction, the number of inputs for the precal-
culated data file is quickly increasing. We propose in this paper
to define a simplified bi-dimensional version of the multiscale
approach proposed in [14] and to implement it directly into a
coupled magneto-mechanical numerical code. This approach
provides an original finite-element approach for the modeling
of the effect of multiaxial stress on electrotechnical devices. It
is applied to the calculation of the magnetic field in the rotor of
a switched reluctance motor submitted to different sources of
mechanical stress.

II. LocAL MAGNETO-ELASTIC CONSTITUTIVE LAW

The local magneto-elastic constitutive law is derived from
the multiscale approach detailed in [13] and [14]. This model
is based on the description of the magnetic material as a set of
magnetic domains with known magnetization (M, ) and random
orientation. The local free energy of a magnetic domain is ex-
pressed as the sum of three contributions: the magneto-static,
the magneto-crystalline anisotropy, and the elastic energies. The
magneto-elastic behavior is obtained by defining the volumetric
fraction of a domain with a given magnetization through the use
of a Boltzmann probability function. This model provides a mul-
tiaxial description of the magneto-elastic behavior and includes
effects such as the dependence of magnetostriction strain on
stress or crystallographic texture effects. However, due to com-
putation time constraints, this approach cannot be easily imple-
mented into motor design numerical tools. We propose to define
a simplified version of the multiscale model (MSM) that allows
to reduce by a factor greater than 1000 the computational burden
due to the coupled constitutive law. The simplified model uses
additional assumptions and gets close to Armstrong model [11].

The model is reduced to a 2-D configuration. The material
is assumed to be a collection of magnetic domains randomly
oriented. The model defines the probability of existence of a
domain oriented along a given direction &. The local potential
energy W, of the material is written using the same principle as
the full MSM (1) [13]. It defines the magneto-static and elastic
contributions, (2) and (3). A macroscopic anisotropy can result
from the combination of crystalline anisotropy and crystallo-
graphic texture. This macroscopic anisotropy can be described
through an anisotropy energy term (e.g., in (4) for a uniaxial
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anisotropy along direction ﬁ, K being a constant to be identi-
fied). If we assume macroscopic isotropy, this term vanishes

Wo =W + W+ Wn (1)
Wmad = — o H.M, )
W= _—o:e" 3)
War = K(a.5). )

The following 2-D definitions for the local magnetization M,
and magnetostriction strain €# are used:

M, =M,& = M, |:041:| (5)
2
3 /N ((1% — l) Aty
T 1 3
Ea =3 < At g AL, (03 — %) . ©

1o is the vacuum permeability. H and M, are the magnetic
field and magnetization. o and €% are the stress and magne-
tostriction strain second order tensors. M is the saturation mag-
netization of the material, A;,, A;,, and \; are magnetostric-
tion constants. Assuming an isotropic behavior, we consider
)\l1 = )\12 - )\t - )\

The unknown of the problem is the local magnetization di-
rection @. The probability f, for the magnetization to be in the
direction & is calculated using a Boltzmann type relation:

exp(—As.W,)
exp(— A, W,)’

a = 7
f T @)

Jo
As is a material parameter linked to the initial anhysteretic
susceptibility x, [13]. Once the probability fo is defined, the
macroscopic magnetization M and magnetostriction &” are
obtained thanks to an averaging operation over all possible
directions:

M =(M,) = / faModa ®)
et = (ek) = /f(,eﬁda. )

This integration step is performed numerically using a dis-
cretization of possible orientations &@.

The material parameters for this simplified 2-D modeling are
M, A, and A; in the case of macroscopic isotropy. The pa-
rameter K, the direction of anisotropy § and magnetostriction
parameters are to be added for a material with a macroscopic
uniaxial anisotropy. The identification of these material param-
eters can be made by using the full 3-D MSM as a numerical
testing machine in a few particular loading cases. These param-
eters can also be identified to fit experimental measurements.
In the particular case of macroscopic isotropy, the parameter
can be easily identified (see the Appendix): My is the satura-
tion magnetization of the material, A can be obtained from the
macroscopic saturation magnetostriction strain A of the mate-
rial (A = 4\,/3) and A, can be deduced from the initial slope
xo of the anhysteretic magnetization curve under no applied
stress (A; = 2x0/(1oM?)).

The description of the material as a collection of planar do-
mains appears quite restrictive compared to the real 3-D config-
uration, and we can expect the prediction of the behavior under
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TABLE 1
MATERIAL PARAMETERS USED IN THE CALCULATION
Parameter M, Ay A,
Value 1.810° | 5010° | 18107
Unit Am™ - m>.J™!

6000 ;
—— H=250 A/m
——— H=500 A/m

5000 H —— H=1000 A/m ¢
—— H=2500 A/m

4000 |
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Fig. 1. Magnetic susceptibility under uniaxial mechanical stress: simplified
2-D modeling (lines) and experimental results (dots) from [10].

multiaxial loadings to be less accurate than with the full 3-D
MSM. Moreover crystallographic texture effect cannot be ad-
dressed accurately with the simplified model: the description
of macroscopic anisotropy can only be made through a macro-
scopic term. We can also notice that due to the 2-D assumption,
only external loadings consistent with the 2-D symmetry of the
problem can be handled.

The material parameters used for the application presented
in this paper are given in Table I and have been identified from
experimental measurements on an iron-cobalt alloy [10], [17].

The evolution of the predicted susceptibility as a function of
the applied stress has been plotted in Fig. 1 for different levels
of magnetic field. The comparison to the experimental results
excerpted from [10] is satisfying.

The magnetostrictive behavior under uniaxial stress state has
also been plotted in Fig. 2 and compared to the experimental
results obtained on the same material [17]. The high sensitivity
of the magnetostrictive behavior to the application of stress is
well captured by the 2-D model.

An example of the magnetic behavior under uniaxial stress
state in the direction of the magnetic field, is given in Fig. 3,
highlighting the strong effect of compressive stress on the mag-
netization curve.

The magneto-elastic behavior under multiaxial stress can also
be defined. An illustration is given in Fig. 4 concerning the sus-
ceptibility of the material for an applied magnetic field of 250
A/m as a function of the applied bi-axial stress (011 and o2
being the principal stresses with 011 in the direction of the mag-
netic field). A compressive stress parallel to the magnetic field
direction combined to a tensile stress perpendicular to the mag-
netic field direction results in a dramatic decrease of the material
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Fig. 2. Magnetostriction curve under uniaxial mechanical stress: simplified
2-D modeling (lines) and experimental results (dots) from [17].
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Fig. 3. Magnetization curve under uniaxial mechanical stress.
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Fig. 4. Relative susceptibility in direction 1 as a function of the principal

stresses 011 and 022 (H = 250 A /m).

magnetic susceptibility. On the other hand a bitension mechan-
ical loading hardly increases the susceptibility.
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Fig. 5. Principle and parameters of the multiscale model (MSM).

This simplification of the full MSM allows to define the mag-
neto-elastic response of the material with very low computa-
tional cost. This constitutive law (illustrated in Fig. 5) is then
implemented into a finite-element formulation, and will be ap-
plied to each element of the mesh.

III. FINITE-ELEMENT FORMULATION

The static finite-element model (FE) is based on classical
mechanical and magnetic formulations [18]. Hysteresis and
eddy-current effects are not taken into account. The mechanical
problem with external forces f (see Section IV-A for more
details on these forces):

dive = — f (10)
is considered with the decomposition of the total strain € into the
elastic strain €°(a) and the magnetostriction strain e*(H, a):

e=€e°+et (11)
and with the constitutive law:
o=[Cle (12)

where [C] is the usual stiffness tensor.! The total strain €
corresponds to the symmetrical part of the displacement (U)

gradient:
oU;
+ 5.

The resulting mechanical formulation contains an additional
term F'*(H , o), corresponding to an equivalent force due to the
magneto-elastic coupling. After discretization with nodal ele-

ments, this term is expressed with

'_1<am 03

£ = —
* 2 (9:133‘

PWE@:/WM#@JMl (14)

Q

V* is the symmetrical gradient of the shape functions, €} the
study domain, and e”(H, o) is the magnetostriction strain ob-
tained from the multiscale model.

Similarly, the magnetic scalar potential ¢ formulation con-
tains an additional term equivalent to a magnetic charge. The
current sources are accounted for by the use of a term 7 in the
definition of the scalar potential [19]:

— B — -

H = —grad® + Tp. (15)
The finite-element formulation is expressed in terms of mag-
netic scalar potential and not with the magnetic vector potential

ILinear elasticity and small strains are assumed.
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so as to use directly the MSM model presented in Fig. 5. Indeed,
the use of the vector potential would require an inversion of the
magnetic part of the MSM model in order to get the convergence
of the iterative process. The magnetic flux density B is defined
from the magnetization M:
B = po(H + M). (16)
Moreover, a modified fixed point (FP) iterative method is used
to insure the convergence of the nonlinear problem [20]. This
method provides a slow but robust convergence. The method
defines a fictive permeability ppp, the algorithm convergence
depending on the choice of its value. It also introduces a fictive
source term Mg p(H , o) such that

B = pupp(H + Mpp). 17)

Maxwell’s flux conservation is written:

div(pppgrad®) = div (/LFP (Mpp(ﬁ,a) + fg)) . (18)

From (16) and (17), Mp p(ﬁ ,0) is updated at each iteration
using the magnetization obtained with the MSM. Thus, the cou-
pling term in the magnetic formulation is finally

—

QH(MFP) ://j,ppvaFp(ﬁ,O')dQ
Q

19)

with V™ the gradient of the shape functions. The coupled
system is then defined by

{ [S]((I)) = (QH(MFP)) + (QO(TO)) (20)
[K)(U) = (F) + (F"(e"))

with S and K respectively the magnetic and mechanical stiff-
ness matrices, U the displacement field, and F' the external
forces. Finally, the resolution of the coupled nonlinear system
(20) is based on the algorithm presented in Fig. 6: values of
magnetization and magnetostriction strain are updated using the
MSM model at each step 7 for each element of the mesh, until the
error criterion e falls below e.. In this work a value of 1.10~4
has been used for e.. For the calculations presented hereafter,
the typical number of iterations to convergence is about 15, cor-
responding to a total computational time of a few minutes on a
standard computer. The number of iterations is directly linked
to the nonlinearity of the problem. For low current sources,
the material behavior is almost linear and the computation con-
verges quickly. The computational cost is getting higher close
to saturation.

IV. APPLICATION TO THE ROTOR OF A SWITCHED
RELUCTANCE MOTOR

The modeling scheme has been applied to the calculation of
the magnetic induction in the rotor of a high-speed switched
reluctance motor (SRM). Indeed thanks to their passive rotor
SRM are well-adapted for high speed applications, leading to
high stress level in the rotating part. The considered configura-
tion is given in Fig. 7. The radius of the rotor is R = 34 mm and
the air gap is 0.4 mm. The electrical excitation is chosen con-
sidering the conjunction configuration in order to have an induc-
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i— 1
e—1; PV — 0
€. — 11074 U° —0;

While (e > e.) do

(M), (")) = MSM(H", 0% 1);
Mpp = (2 = H™ + poM*
[STP)(@) = (QH(Mp)) + QT
[KJ(U?) = (F) + (F*(e"));

I e L St
t—i+1;

done

Fig. 6. Modified fixed-point algorithm; ¢ stands for the iteration number,
M SM for the multiscale model.

Fig. 7. Switched reluctance motor 2-D mesh.

tion in the tooth corresponding to the beginning of the magnetic
saturation (about 1.4 T for the considered material). In the fol-
lowing, when the conjunction configuration is considered, only
one quarter of the machine is represented taking advantage of
the symmetries.

A. Mechanical Loading

Several sources of external forces have been considered. A
distinction has been made between initial forces (inherited from
manufacturing process) and operating forces (appearing in use).

1) Operating Forces: Three sources of operating stress have
been identified.

Incompatibility stresses arise from the magnetostriction
strain in the whole machine. An upper bound for the elastic en-
ergy corresponding to these incompatibility stresses is given by
the knowledge of the magnetostriction strain. This upper bound
would correspond to infinitely rigid boundary conditions:2

(0 : €°)mmP < max(e” : C' : eM). 21

The calculated values of this energy correspond to stress
levels lower than 7 MPa if considering tensile stress. This value,
overestimating the real configuration, is very low compared
to the level of the other operating stresses. This term will be
neglected in the following.

Stresses induced by magnetic forces are then considered. A
computation with no mechanical stress is done to get the mag-
netic state of the whole machine. Local forces are computed at

2We then consider € = —g&* so that the total strain is zero.
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Fig. 8. Radial inertial stress o..,. (Pa) in the rotor (N = 30000 rpm).

each node of the mesh by derivation of the local magnetic co-en-
ergy [21]. These forces are mainly radial. The azimuthal com-
ponent of these forces, that generates the torque, is small and its
effect on the stress can be neglected. The radial component of
the magnetic forces is taken as source term for an elastic com-
putation on the rotor. It is found that all the components of the
induced stress are lower than 2 MPa. This source of operating
stress will also be neglected in the following.

Inertial stresses are the third source of operating stress. The
inertial stress has been calculated and discretized according to
(22) and (23). A rotational speed N = 30 000 rpm (w =
2w N/60) has been chosen, which corresponds to a peripheral
speed of 107 m/s. The density of the material is p = 7800 kg -
m—3. The inertial force density (22) leads to the expression of
the external force F**

f =pw’r (22)
FY = /vfdQ (23)
Q

where v is the test function for the mechanical displacement.

The resulting distribution of inertial stress in the rotor is given
in Figs. 8-10.

The stress state is mainly biaxial in the rotor, with very low
shear stress, except in the lower corners of the rotor teeth. The
amplitude of stress is significant (a few tens of MPa) but remains
far from the yield stress of the material (about 300 MPa).

2) Initial Forces: Residual stresses arise from the forming
process of the machines. These residual stresses may be due
to punching, cutting, stacking, or welding processes [22], [23],
[24], [25]. The estimation of these forces is very difficult since
it is process dependent. However, these initial forces may
significantly affect the magnetic behavior of materials. For
the purpose of illustration we considered the stress resulting
from the assembly process of the iron sheets. These stacking
forces have been considered as a uniform compression along
the z axis (orthogonal to the studied plane). This stress exists
both in the stator and in the rotor and is assigned the value
0., = —30 MPa. For the practical calculatiog of the perme-
ability, we consider a local coordinate system (h, 2)) where h is
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Fig. 9. Tangential inertial stress 4o (Pa) in the rotor (N = 30 000 rpm).
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Fig. 10. Shear inertial stress .9 (Pa) in the rotor (N = 30 000 rpm).

the direction of the magnetic field. The 2-D constitutive law is
applied in this plane, defining the permeability in direction h.
This calculation is valid only if the material is initially isotropic,
otherwise a full 3-D approach would be necessary.

B. Effect of Stress on the SRM Behavior

In order to investigate the effect of stress on the behavior of
the SRM, several calculations have been carried out. The first
one is a magnetic calculation without any mechanical stress. It
provides the reference magnetic state of the SRM based on the
magnetization curve given in Fig. 3 for a stress o = 0. A second
calculation has been done using the MSM and considering only
the inertial stress at N = 30 000 rpm. A third calculation has
been done considering only a uniform initial compressive stress
in the direction normal to the sheet plane 0., = —30 MPa.
These calculations have been carried out in order to identify
the most significant effects on the material permeability and on
the machine torque. A full calculation with all sources of stress
should be done if a design procedure is foreseen. Indeed no su-
perimposition assumption can be made since the effect of stress
on the magnetic behavior, as well as the magnetic behavior it-
self are strongly nonlinear.
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Fig. 11. Distribution of the magnetic field (A - m~') in the rotor—no applied
stress. (a) Radial magnetic field; (b) tangential magnetic field.
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Fig. 12. Distribution of the magnetic field (A - m ') in the rotor—N =
30 000 rpm. (a) Radial magnetic field; (b) tangential magnetic field.
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Fig. 13. Distribution of the magnetic field (A - m ') in the rotor—o.. =
—30 MPa. (a) Radial magnetic field; (b) tangential magnetic field.

1) Material Permeability: The effect of stress on the mag-
netic behavior can only be understood if the relative orientation
between stress and magnetic field is known. Figs. 11-13 plot
the radial and tangential components of the magnetic field in
the rotor for all the considered configurations. It can be seen
that the magnetic field distribution is significantly modified by
the stress. The level of magnetic field (a few hundred A - m~1)
is relatively low and remains mostly below the saturation knee
of the magnetization curves (Fig. 3).

Fig. 14 plots the ratio between the predicted permeability
e = B.H / H? considering the inertial stress and the reference
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permeability ji.o¢ (With no stress). The effect of stress is very
significant, as can be expected from Fig. 4. The permeability is
strongly increased, up to a factor 1.7, in areas in tension with a
magnetic field parallel to the stress direction. It can be divided
by a factor 2 in the areas of uniaxial tension in a direction per-
pendicular to the magnetic field.

The same analysis is then done for the effect of the initial
stress on permeability. Fig. 15 plots the ratio between the pre-
dicted permeability p1, = B.H / H? for a uniform stress 0., =
—30 MPa and the reference permeability on the rotor.

In this case, the compressive stress is normal to the magnetic
field direction on the whole machine and consequently the mag-
netic permeability is increased up to a factor 1.8 on the rotor and
the stator. The effect of stress on the permeability is non uniform
owing to the non linearity of the magnetic behavior.

2) SRM Torque Calculation: A computation has been per-
formed in order to evaluate the effect of stress on the SRM
torque. A set of angular rotor positions between 0° (conjunc-
tion) and 30° is studied. The finite-element mesh includes a cir-
cular line, in the air gap, with uniform nodes density that allows
to generate the different configurations without remeshing. The
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Fig. 16. Machine torque change (%) under stress.

magnetic excitation is maintained constant for all the rotor po-
sitions. The value of the torque 7" at each rotor position is com-
puted from the flux of Maxwell’s tensor through a circular sur-
face v in the air gap [21]:

T=r %Bn.th'y 24)

e
where B,, and H; are respectively the normal component of the
magnetic flux density and the tangential component of the mag-
netic field and r the radius of . The relative change in the torque
values under stress compared to the reference configuration is
plotted in Fig. 16.

It is shown that the inertial stress has no significant influence
and that the initial stress leads hardly to a 3% increase of the
mean SRM torque (the mean torque values, between angular
positions 2 and 20°, are respectively 16.73, 16.80, and 17.16
N-m for the configuration with no stress, with inertial stress, and
with initial stress). Due to the high value of the permeability in
the different cases, the torque is mainly related to the air-gap flux
that is mainly controlled by the reluctivity of the air gap. Thus,
the great variation of the iron reluctivity due to the stress does
not significantly influence the global reluctivity of the structure.

C. Discussion

Despite the significant effect on the permeability, the calcu-
lations show that the effect of stress on the SRM torque is very
narrow. The inertial stress hardly modifies the machine torque.
Calculation has also been carried out for a rotational speed of
60000 rpm with similar conclusions. Only the considered ini-
tial stress is shown to slightly modify the machine torque. A
main difference between these two cases is that the initial stress
modifies both the rotor and the stator permeability, affecting the
whole magnetic circuit. It must be noticed that the obtained re-
sults strongly depend on the choice of motor architecture, mate-
rial, and technological design—such as air-gap width. Moreover
the introduction of the hysteresis in the constitutive law of the
magnetic material would certainly highlight a significant effect
of stress on the overall losses of the machine. This dissipative
calculation is a forthcoming challenge and will be the object of
further publication.
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V. CONCLUSION

In this paper, a 2-D magneto-elastic model for the behavior
of magnetic materials has been proposed. It is based on a sim-
plification of a full multiscale approach previously proposed.
This simplified magneto-elastic model has been implemented
into a finite-element coupled magneto-mechanical formulation.
Finally the proposed method for magneto-mechanical structural
analysis has been applied to study a high rotation speed switched
reluctance motor. Initial and operating forces have been consid-
ered for their effects on the machine behavior. The proposed
model allows to understand how the relative configurations of
stress and magnetic field modify the permeability. The consid-
ered stress and motor configuration have been shown to have
slight influence on the SRM torque. The study of the effect of
stress on the overall performance of electrical machine is still the
object of ongoing researches, notably concerning the modeling
of hysteresis losses. In this context a structural analysis tool in-
troducing the multiaxial magneto-elastic coupling into material
constitutive laws constitutes a step towards a fully coupled de-
sign of electromagnetic devices.

APPENDIX
CONSTITUTIVE PARAMETER IDENTIFICATION
FOR ISOTROPIC MATERIAL

In the case of isotropic materials, the constitutive parameters
for the simplified 2-D model reduce to M, A and Ag.

1) M, is the saturation magnetization of the material (this is
also the case for anisotropic materials).

2) The determination of A relies on the definition of the satu-
ration magnetostriction strain A as the difference between
the strain at very high magnetic field and the strain at zero
magnetic field under no applied stress:

As = €} (Hgat,0) — €7°(0,0). (25)

The saturation state is defined as a single domain configu-

ration with magnetization parallel to the applied field. We
then have

e (Hgat,0) = A. (26)

The demagnetized state is defined as a configuration for

which each direction & is equiprobable. The magnetostric-
tion strain is then

27
1 3 1 A
14 _ e 2 = .
£,(0,0) = 5 / 2)\ (cos a 3) ifeh 1 27
0
We thus obtain
4
A= =) 28
3 (28)

3) A; can be deduced from the initial slope xo of the an-
hysteretic magnetization curve under no applied stress
following the idea presented in [13]. The principle is to
write analytically the anhysteretic curve of the unstressed
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isotropic material. In this particular case, the potential
energy of a domain reduces to

Wy =W = —uoﬁ.]\Zf = —poH M; cos a. 29)

The corresponding volumetric fraction is then

1
fa = g exp(AspoH M, cos @) (30)
with or
S = /e>(p(ASu0HJ\/.I',Q cos a)da. 31
0

The macroscopic magnetization M of the material (parallel
to the applied field) is then written:

2T

M = /foéMS cos adao
0

27

M,
= S' /exp(AsuoHMgcosa)cosada. (32)

0
For very low applied magnetic field we can make use of
the following approximation:
exp(AspoH M, cosa) ~ 1+ AgpoH M cos a. (33)
We then obtain

1
M ~ §ASNOHM§. (34)

Defining the initial anhysteretic susceptibility o as the
ratio between M and H for very low magnetic magnetic
field, we obtain

_ 2x0
T M2

(35)

The expression of A, for the 2-D model is very similar to
the one obtained for the full 3-D multiscale model: A3P =

3x0/(oMZ) [13].

The three parameters of the 2-D constitutive law in the case
of isotropic materials can then be very easily identified.
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