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A B S T R A C T

Magnetoelastic couplings in ferromagnetic materials can be modelled using multiscale approaches. Various
degrees of sophistication are accessible depending on the foreseen material and application. Here, we present a
set of models, built on this approach, which can be used for devices magnetic field analysis. The representation
of combined crystal anisotropy and texture effects is analysed through the introduction of a simplified fiber
texture. A method is also proposed for the computation of magnetostriction hysteresis together with magneti-
zation by association with a Jiles-Atherton model. All the models are detailed with their main physical and
numerical characteristics, and the whole set of features that are needed for their use in device simulation tools. A
test structure is finally simulated using the finite element method in order to illustrate the possibilities offered by
these multiscale approaches.

1. Introduction

Magnetic and elastic properties are strongly coupled in ferromag-
netic materials. This coupling may have uncontrolled side effects in
some applications (e.g. variation of losses induced by mechanical stress
[1,2], vibration induced by magnetostriction in electrical machines [3]
or transformers [4,5]) or may be used advantageously in some others
(e.g. magnetostrictive actuators [6,7], sensors [8,9], field weakening in
permanent magnet synchronous machines [10]).

Simple models based on phenomenological assumptions are able to
partially reproduce this complex coupled behaviour. For example, an
extension of the well-known Jiles-Atherton hysteresis model, originally
proposed by Sablik et al. [11], allows influencing the magnetic response
of a material depending on an applied external stress thanks to the
definition of a stress contribution to the effective magnetic field. Such
model, even if interesting due to its simple formulation and im-
plementation, suffers a narrow application range: indeed, 2- and 3-di-
mensional stress configurations need to be represented in a unidirec-
tional fashion using equivalent stress formulations [12]. Moreover, the
quality of obtained results is highly dependent on the available ex-
perimental data necessary to optimize the model [13]. Identical
drawbacks are encountered in Preisach model adaptations. Because of
these difficulties, this kind of stress dependent hysteresis model was
rarely applied to magnetic field analysis simulations and only a few

attempts were performed on simple structures [14,15].
The variety of configurations appearing in real-life devices and the

difficulties associated with the full experimental characterization makes
the use of more predictive models of utmost importance. Because me-
chanical stress and magnetic field should be represented, respectively,
as a second order tensor and a vector, and because of strong non-line-
arities, the fully coupled magneto-elastic behaviour is very complex. In
particular, magneto-elastic properties (permeability, hysteresis losses,
magnetostriction) drastically change between uniaxial [16] and multi-
axial [17–19] field/stress configurations. Possible ways to model the
magneto-elastic macroscopic behaviour, in a multiaxial context, are
know as energetic [20,21] and multiscale approaches [22–26]. These
approaches are based on the material energy balance and give robust
predictive models. Multiscale approaches aim at minimizing the po-
tential energy resulting from the magnetic domain orientations. They
also make use of transition rules between magnetic domain, single
crystal and polycrystal scales. The resulting 3-scale model is very
powerful to represent magneto-elastic behaviour in complex config-
urations. However, it is usually too demanding in terms of computation
resources to be used for the simulation of devices.

Different simplifications of the anhysteretic multiscale approach can
be considered and may lead to a variety of simplified multiscale models
(SMSMs). Some of these SMSMs have already been analysed and ap-
plied to device simulations [2,5,27]. In this paper we make a synthesis
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on the available multiscale approaches and we highlight the specifi-
cities of each SMSM in terms of magneto-elastic behaviour re-
presentation and numerical evaluation. We also propose a new SMSM
variant taking into account a simplified texture which is able to capture
additional macroscopic characteristics of ferromagnetic materials.
Some practical questions, raising when trying to couple these SMSMs to
any device simulation method (integration, differentiation and inver-
sion of the model), are addressed. A SMSM is then associated with the
Jiles-Atherton model of magnetization hysteresis and we propose a
method to obtain the corresponding magnetostriction hysteresis. Fi-
nally, we show an example of application using the finite element
method to simulate the test structure defined in TEAM workshop pro-
blem 32 [28] and calculate the distribution of hysteretic induction and
magnetostriction under mechanical stress and magnetic field.

2. Simplified multiscale approaches

Some characteristics of the full multiscale approach [22–25] cannot
be preserved for application in device simulation. The main simplifi-
cation which is common to all SMSMs presented here consists in ne-
glecting local variations of the magnetic field and mechanical stress at
the grain and domain scales. This means that the magnetic field and
mechanical stress felt by magnetic domains are the same as the ones
applied at macroscopic scale. In the full multiscale approach, a locali-
zation process [23] allows evaluating the loading at the grain scale. In
the SMSMs, this step is avoided which reduces drastically the compu-
tation cost. Another assumption concerns the grain texture of the ma-
terial. In the full multiscale approach the texture is represented in a
rather precise way using data from EBSD (electron backscatter dif-
fraction) measurements and accounting for a large set of grain or-
ientations. In SMSMs, although some grains may be considered, the set
of orientations must be reduced.

2.1. General approach at crystal scale

A crystal is considered as a set of magnetic domain families (do-
mains with the same orientation) which volume fraction depends on the
associated energy. At the scale of a magnetic domain, the local mag-
netization (

→
Mα) and magnetostriction strain (εα

μ) depend only on the
direction →α (unit vector), the saturation magnetization (Ms) and max-
imum magnetostrictive strain constants (λ100 and λ111):
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where α α α( , , )1 2 3 are the components of vector →α in the chosen co-
ordinate system. The potential energy (per unit volume) associated with
one orientation is assumed to be the sum of magnetic, magneto-elastic
and anisotropy contributions:
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and Wα
an may depend on further assumptions related to each SMSM. In

these equations, μ0 is the vacuum permeability,
→
H is the applied

magnetic field and σ is the applied stress. The scalar product of vectors
→a and

→
b is → →

= =a b a b· Σi i j1
3 and the double-dot product of second order

tensors a and b is = = =a b a b: Σ Σi j ij ij1
3

1
3 . The volume fraction of each

domain family (domains with the same orientation →α ) is then calcu-
lated considering a Boltzmann statistics [22] as
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where As is a parameter of the SMSM which can be related to the
permeability at zero field [24]. Finally, the anhysteretic magnetization
and magnetostriction strains at the crystal scale are obtained by the
weighted sum over all possible directions

∫→
=

→
=
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M M f M dαα α α (7)

∫= =ε ε εf dαμ
α
μ

α α
μ

(8)

Along the text, character α is used as a subscript for any quantity as-
sociated with a specific domain orientation (denoted by unit vector →α ).
The notation dα is merely used to indicate that the integrals are per-
formed over the set of possible domain orientations. Numerically, these
integrals are evaluated by discrete sums considering a finite number of
possible domain orientations [29].

The general approach presented here, for the determination of
magnetization and magnetostriction at the crystal scale, can be used in
different ways to represent the macroscopic behaviour of a material.
Some possibilities are shown in the following Sections 2.2 and 2.3. The
main differences between these approaches consist in the definition of
the anisotropy, the set of possible domain orientations and the set of
crystal orientations that may be considered.

2.2. Macroscopically equivalent single crystal

This kind of SMSM aims at representing the macroscopic behaviour
from a unique equivalent crystal.

2.2.1. Analytical model
Analytical expressions of the magnetization and magnetostriction

can be obtained for isotropic materials by reducing the number of
possible domain orientations to 6 [30,31]. An orthonormal basis
→ → →h p z( , , ) associated with the magnetic field is considered. The unit

vector
→
h represents the direction of the magnetic field,→z is an arbitrary

unit vector perpendicular to the magnetic field and → = → ×
→

p z h com-
pletes the basis. The set of possible domain orientations is then defined
as

→
−

→ → −→ → −→h h p p z z{ , , , , , }. The isotropic crystal is obtained by setting
=W 0α

an and = =λ λ λs100 111 . This last condition leads to the isotropic
local magnetostriction tensor:

= ⎛
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where ⊗ represents the tensor product and I is the 2nd-order identity
tensor. The magnetization and magnetostriction are then:
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and

=A exp τσ( )i ii (13)

for ∈i h p z{ , , }, where σii is the ii-component of the applied stress
tensor. Two constants are defined as =κ μ A Ms s0 and =τ A λ(3/2) s s. The
analytical model offers simple expressions for the magneto-elastic
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behaviour and retains the effects of multiaxial stress (normal stresses
with respect to the chosen basis). The variation of domain volume
fractions with the magnetic field can be interpreted as a consequence of
domain wall motion only. No domain rotation effect can be represented
as crystal anisotropy is not considered and as the model always includes
domains parallel to the magnetic field. Shear stress effects with respect
to the chosen basis are also neglected. The model does not incorporate
intrinsic anisotropy, and magnetization and magnetostriction always
follow the magnetic field orientation. However induced anisotropy is
accounted for as the behaviour depends on the relative orientation of
the magnetic field and mechanical stress tensor.

2.2.2. Discrete model
In this approach the set of possible domain orientations does not

depend on the magnetic field. The set is defined from a discretization of
the unit sphere. In order to avoid uncontrolled anisotropy effects, the
set should be as dense and uniform as possible [29]. To this purpose the
nodes of an icosphere can be used. An icosphere is a triangular mesh of
the sphere built by regular subdivision of the triangular faces of an
icosahedron. The set density is then determined by the icosphere order
(number of subdivisions) and presents a central symmetry which en-
sures the existence of opposite orientation domain families and hence
zero magnetization and magnetostriction when no magnetic field or
stress is applied.

The main specificity of the discrete model relies on the treatment of
anisotropy. For perfect single crystals, saturation magnetostriction
constants and anisotropy energy constants are well defined and tabu-
lated for many materials. There are, in fact, only two scales to be
considered (the domain scale and the grain scale) and they are both
represented by the model. In this case, for a cubic crystal, the aniso-
tropy energy is [24]

= + + +W K α α α α α α K α α α( )α
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where K1 and K2 are the anisotropy constants. For strongly textured
materials (e.g. Goss texture materials), the macroscopic behaviour
might be similar to the one of the single crystal. As a consequence,
magnetostriction anisotropic tensor and anisotropy energy of the
crystal can be used as a basis for the macroscopically equivalent single
crystal. Some corrections can be applied in order to get a better re-
presentation of the true macroscopic behaviour, in particular if struc-
ture induced anisotropy has to be accounted for (demagnetizing field
effects) [5]. Finally, for weakly textured materials, the strong aniso-
tropy existing at the crystal scale is very different from the (generally
weak) macroscopic anisotropy. In consequence, an equivalent single
crystal can be defined considering an isotropic local magnetostriction
tensor ( = =λ λ λs100 111 ) and adjusting the anisotropy energy in order to
fit the macroscopic behaviour. The choice of an isotropic magnetos-
triction tensor implies that the material will have the same saturation
magnetostriction for all directions. The macroscopic anisotropy might
come from texture or structure effects. It can take different forms, e.g.,

⎜ ⎟
⎛
⎝

→ →⎞
⎠

J α β·
2

[27] for a uniaxial anisotropy where
→
β is the anisotropy di-

rection and J is the anisotropy constant, or → →NCα α·( ) [5] for a multi-
axial anisotropy where C is the anisotropy constant and N is a nor-
malized diagonal matrix (in the coordinate system associated with the
principal anisotropy axes). In such an approach for weakly textured
materials, because microcrystalline anisotropy is not considered, the
effects of domain rotations are not represented and the magnetization
process can be interpreted in terms of domain wall motion only.

2.3. Macroscopically equivalent simplified texture

Some characteristics of the magneto-elastic behaviour cannot be
represented by the SMSMs based on an equivalent single crystal. For
example, the non-monotonous behaviour of the magnetostriction as a
function of the magnetization or inflexions in the curve of magnetiza-
tion against magnetic field remain out of reach for such models. These
phenomena appear as consequences of material texture and strong
crystal anisotropy. A possible way to retrieve this kind of behaviour
consists in considering a simplified texture made of a few crystals only.
Each crystal (or grain) is treated independently to compute the asso-
ciated magnetization (

→
Mg) and magnetostriction (εg

μ) from Eqs. (7) and
(8). The macroscopic behaviour is then calculated by a weighted sum
over the grains. For this model, the magnetization and magnetostriction
are redefined as

∑→
=

→
M f M

g
g g

(15)

∑=ε εfμ

g
g g

μ

(16)

where the sum is made on all the grain orientations of the considered
simplified texture, fg represents the proportion of each grain orienta-

tion, and
→
Mg and εg

μ are the magnetization and magnetostriction given
by the single crystal model.

As an example, the anhysteretic magneto-elastic behaviour of a non-
oriented Fe-3%Si laminated material [32,17] is modelled using this
approach. The measured texture data are presented as pole figures
(Fig. 1). This texture is fairly similar to the one of a perfect 111 fibre
with its axis perpendicular to the sheet plane (Fig. 2). Such a texture
can be obtained (for modelling) starting from a crystal with a [111]
direction perpendicular to the sheet plane and generating a set of
crystals by rotations, with respect to this axis, of angles uniformly
distributed between 0 and π2 /3 (because of the periodicity of this
configuration).

A simplified fibre made of only 4 crystals, in equal proportion (i.e.
with =f 0.25g ), which pole figures is represented in Fig. 2 by rhombi, is
analysed here. The model parameters and their values are presented in
Table 1. These values are the same as in [32]. They come from tabu-
lated references for all parameters except for As, which value is iden-
tified from the experimental initial susceptibility under no stress [24].

Fig. 1. Pole figures (stereographic projection) for non-oriented Fe-3%Si from [32].
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In the simplified approach presented here, optimization of these para-
meters could be done within a reasonable range and could help in fit-
ting with experimental results. However, this kind of adjustment is not
considered here, and we focus on showing that, from small set of ta-
bulated values, the model is able to reproduce the main characteristics
of the material behaviour. Magnetization and magnetostriction are
analysed as functions of the direction of the applied magnetic field in
the sheet plane. Fig. 3 and Fig. 4 show the envelopes of the set of curves
obtained by varying the direction of the applied magnetic field from °0
to °90 (with respect to the RD) by °5 steps, when no stress is applied.
These figures show that the model has a mainly isotropic behaviour.
Some anisotropic behaviour (characterized by a wider envelope curve
in Fig. 4) appears on magnetostriction near saturation due to the small
set of crystals. For fibres made of more than 5 crystals this anisotropy
would be hardly noticeable in these graphics. The component of mag-
netostriction perpendicular to the sheet plane (not presented here) is
less than 1% of the other components below saturation ( <M 1.3·106 A/
m) because the axis of the fibre is a 111 hard magnetization direction.
The change of sign of the slope of magnetostriction curves observed
when reaching saturation is an expected behaviour which results from
the combination of different crystals with strong anisotropic properties.

This kind of phenomenon cannot be reproduced by the simpler SMSMs
presented in previous sections.

The effect of uniaxial stress (parallel to the magnetic field) is pre-
sented in Figs. 5–7: results from the model are on the left, experimental
data from [32] are on the right. It should be noticed that magnetos-
triction curves are plotted using the saturation value as reference. In
experimental results, because of the noise present on measurement, this
may result in small uncontrolled vertical shifts. The model shows good
consistency with experimental results. In particular, it can be noticed
that it reproduces the inflexion of the magnetization curve which can be
observed under strong compressive stress (−100MPa). However, one
characteristic of the real material behaviour cannot be represented by
the model: the effect of tensile stress should be non-monotonous
[17,18,32,33]. For the considered material, a tensile stress lower than
50MPa increases the magnetization and reduces the variations of the
magnetostriction strain, but starts to have the opposite effect at higher
values. This experimental observation is not described by the model.

3. Integration, differentiation and inversion of the SMSM

In order to enable the use of SMSM models in device simulation
tools, some important properties are detailed in this section. Integration
of the model gives access to the energy stored in the material.
Differentiation allows the application of differential time-stepping
schemes and non-linear Newton-Raphson algorithms for the resolution.
Finally, inverse models are needed for the implementation in the
commonly used strain and magnetic flux density based formulations
(such as the displacement and magnetic vector potential formulations).

For the sake of simplicity, the case of the numerical equivalent

Fig. 2. Pole figures for a perfect 〈111〉 fibre with the axis perpendicular to the sheet plane.

Table 1
Parameters of the simplified texture SMSM for Fe-3%Si.

−− − −
A m J M A m λ λ( / ) ( / )

3·10 1.6·10 23·10 4.5·10
s s3 100 111

3 6 6 6

K K(kJ/m ) (kJ/m )
38 0

1 3 2 3

Fig. 3. Envelope curve of the parallel magnetization as a function of magnetic field, obtained by rotation of the magnetic field from °0 to °90 with respect to the RD
(the right figure is a zoom on the H-axis of the left one).
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Fig. 4. Envelope curve of the parallel and perpendicular magnetostriction in the sheet plane as a function of magnetization, obtained by rotation of the magnetic field
from °0 to °90 with respect to the RD.

Fig. 5. Magnetization as a function of the magnetic field, for different values of the uniaxial stress: multiscale model with simplified texture (left), measurements
(right) from [32].

Fig. 6. Parallel magnetostriction (∊hh) in the sheet plane as a function of magnetization, for different values of the uniaxial stress (in MPa): multiscale model with
simplified texture (left), measurements (right) from [32].
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single crystal SMSM is considered. All results can be straightforwardly
extended to the equivalent simplified texture SMSM by applying
weighted sum just as in Eqs. (15) and (16). The case of the analytical
model is not fully treated but its specificities, which come from its
magnetic field dependent local magneto-elastic energy, are highlighted
in a separate section.

3.1. Integration

The total magneto-elastic co-energy density of an anhysteretic ma-
terial can be defined as

∫ ∫=
→ →

+ ε σw B dH d· :c (17)

where
→
B and

→
dH are vectors, and ε and σd are second order tensors.

The integrals on
→
H and σ are calculated between a reference state,

which might be
→

= → =σH 0( 0 , ), and the current state, independently
from the path between these two states. The magnetic flux density is
→

=
→

+
→

B μ H M( )0 and the total strain is = +ε ε ε( e μ), where εe is the
elastic strain tensor. The part of the co-energy relative to the magneto-
elastic behaviour is then

∫ ∫ ∫→ →
+ = −( )ε σμ M dH d

A
ln exp A W dα· : 1 ( )μ

s
s α0 (18)

which can be verified by partial differentiation with respect to the
magnetic field or the mechanical stress. The co-energy can then be
calculated for any loading from the energy associated with each domain
family. It can be noticed that the total energy density is not the mean
value of the energies associated with each domain family (∫ f W dαα α ),
which means that the model implicitly includes interactions between
domains. The energy density may be calculated from the co-energy
density by

=
→ →

+ −ε σw B H w· : .c (19)

3.2. Differentiation

Magnetization (
→
M ) and magnetostriction (ε) can be differentiated

with respect to the input variables, i.e. the magnetic field (
→
H ) and the

stress (σ). We may start with the differential susceptibility tensor,
which is the partial derivative of

→
M with respect to

→
H at constant stress

σ . Because
→
Mα and →α do not depend on the magnetic field, we have:

∫∂
→

=
→

⊗ ∂→ →M M f dαH α H α (20)

It can be shown [2,34] that the partial derivative of fα with respect

to
→
H is:

∫∂ = ∂ − ∂→ → →( )f A f f W dα WH α s α α H α H α (21)

From Eq. (3)–(5), and considering that the anisotropy energy does
not depend on magnetic field and stress, we also have:

∂ = −
→

→W μ MH α α0 (22)

Finally, the analytical expression for the differential susceptibility is
obtained as:

∫∂
→

=
→

⊗
→

−
→

⊗
→

→ ( )M μ A f M M dα M MH s α α α0 (23)

From Eq. (23), the differential susceptibility tensor appears to be
proportional to the difference between the tensor product of the mac-
roscopic magnetization by itself and the volume fraction weighted
average of the tensor product of the local magnetization by itself. The
other components of the differential model can be obtained in the same
way:

∫∂ = ⊗ − ⊗( )ε ε ε ε εA f dασ
μ

s α α
μ

α
μ μ μ

(24)

∫∂
→

=
→

⊗ −
→

⊗( )ε εM A f M dα Mσ s α α α
μ μ

(25)

∫∂ = ⊗
→

− ⊗
→

→ ( )ε ε εμ A f M dα MH
μ

s α α
μ

α
μ

0 (26)

where ∂ εσ
μ is a fourth order tensor, ∂

→
Mσ an and ∂→εH

μ are third order

tensors. The last two tensors verify ∂
→

= ∂→εμ M( ) ( )σ ijk H
μ

jki0 as they
should, considering that they derive from the same co-energy and ap-
plying Schwarz theorem. The set of Eqs. (23)–(26) constitutes the
output of the differential SMSM. In terms of components, the tensors
appearing in Eqs. (23)–(25) are of the form:

∂
→

= ∂
∂

→M M
H

( )H ij
i

j (27)

→
⊗

→
=M M M M( )ij i j (28)

∂ =
∂ ∊
∂

ε
σ

( )σ
μ

ijkl
ij
μ

kl (29)

Fig. 7. Perpendicular magnetostriction (∊pp) in the sheet plane as a function of magnetization, for different values of the uniaxial stress (in MPa): multiscale model
with simplified texture (left), measurements (right) from [32].
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⊗ = ∊ ∊ε ε( )μ μ
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μ

(30)

∂
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M M
σ

( )σ ijk
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⊗ = ∊εM M( )μ

ijk i jk
μ

(32)

3.3. Inversion

Full inversion of the SMSM consists in allowing the magnetic flux
density (

→
B ) and the mechanical total strain (ε) to be the input para-

meters (state variables) [35]. From the differential model, the inverse
SMSM can be obtained numerically. Using Voigt notation for the stress
and strain tensors, the differential model can be written in matrix form
as:

⎡
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⎢
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∂ ∂
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H

H
μ μ

0 0 0

(33)

To inverse the model, we need to find
→

σH( , ) such that:

→
=

→
+

→
B μ H M( )0 (34)

and

= +ε S σ ε: μ (35)

where S represents the elastic compliance tensor. Using
Newton–Raphson method, an approximate solution is found by solving
iteratively:

⎡
⎣⎢

→⎤
⎦⎥

= − ⎡
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−

σ
G
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where

= ⎡
⎣

⎤
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+G I
S

Fμ 0
0
0 1

(37)

and ⎡
⎣⎢

→⎤
⎦⎥ε

δB
δ

is the residual.

With the objective of analysing the convergence properties of the
inverse model, we consider the case of the equivalent single crystal
SMSM with a set of possible directions given by a 4-th order icosphere
(2562 orientations). The iterative Newton-Raphson procedure is
stopped when the relative variation of the norm of the magnetic flux
density is less than −10 10 or when the algorithm starts diverging (in this
case, values corresponding to the prior iteration are considered). The
parameters used for the model are given in Table 2 and are meant to
represent a typical non-oriented material. To illustrate the results, we
show the map of the xxx-component of tensor ∂

→
Hε with respect to the

−x and −y components of the induction flux density obtained from the
inverse model and the corresponding convergence characteristics
(Fig. 8). The maps are obtained by nested loops incrementing each
component of the magnetic flux density ( −y component is incremented
in the inner loop), starting from

→
=B 0 and using last solution as initial

guess in the iterative process. The map of ∂
→
H( )ε xxx shows the expected

material behaviour (this kind of map can be useful for the analysis of
magneto-mechanical transducers [9]). The map of iteration number
(Fig. 8 (b)) should be analysed together with the logarithm of the re-
lative error on the norm of the magnetic flux density (Fig. 8 (c)). In the
region where this norm is less than the convergence criterion ( −10 10),

the algorithm converges in less than 6 iterations. In the region where
this norm is more than the convergence criterion ( −10 10), the algorithm
starts diverging at the second iteration generally. The logarithm of the
Frobenius norm of the total displacement (Fig. 8 (c)) represents the
absolute error on the second entry of the inverse model (the imposed
total displacement being null, a relative error cannot be defined). This
map shows that, when convergence is reached, the total displacement is
small (less than −10 14). The convergence difficulties encountered in
highly saturated regions are linked with the discretization of the set of
possible domain orientations, which impacts on the evaluation of in-
tegrals and induces small local anisotropies at high field intensities. The
same maps are drawn in Fig. 9 using an icosphere of order 6 (40962
orientations), instead of order 4. In this case, the convergence is always
reached. A kind of radial pattern, associated with the discretization, is
noticeable in the upper-right corner of Fig. 9 (b).

This example shows that good convergence characteristics can be
obtained by direct application of the Newton–Raphson procedure to
inverse model, eventually refining the discretization of the possible
domain orientations.

3.4. Comments on the analytical SMSM

The magnetization of the analytical SMSM can be differentiated
with respect to the magnetic field from Eq. (10). The component
∂

→
→M( )H hh was already presented in [30]. The calculation of the full

differential susceptibility tensor is more complex. We just sketch here
the calculus in order to highlight the main difficulties. The matrix re-
presentation of vectors and second order tensors is found more con-
venient and used here. First we can note

= ∂
→

= −
→→′→D Ih

H
h h1 ( ).H (38)

where ′ is the transposition operator and I is the identity matrix. Then
we write

∂
→

= +
→

∂→ →DM M h MH H (39)

where ∂→MH is a row vector. To go further, we choose a vector →z in-
dependent of the magnetic field and we define

= ∂ → = ∂ → ×
→

=→ → →D Dp z h Xp H H z (40)

where →X z is the antisymmetric matrix associated with the left vector
product by →z . We also define

→′ = ∂ = ∂
→′ →

=
→′→ → σ Dσg σ h h h2H hh H (41)

and similarly

→′ = ∂ = + ′ → ′→ D D σg σ p( )p H pp p p (42)

Then we have

∂ = →′→A τ exp τσ g( )H h hh (43)

⎜ ⎟∂ = ⎛
⎝

⎞
⎠

→′→A τ exp τσ gH p pp p
(44)

and

∂ = →′→A 0H z (45)

which are needed to reach an explicit form of ∂→MH , with some more
straightforward but cumbersome work. The other blocks of the differ-
ential model would require significant additional efforts. The difficul-
ties associated with the analytical SMSM rely on the fact that the local
magneto-elastic energy depends on the applied magnetic field, and then
(22) does not hold. The model retains only the principal stresses in the
basis defined from the magnetic field direction, and they might change
as the magnetic field rotates. In particular, pure shear stress in an initial

Table 2
Parameters for the equivalent model.

A (m /J)s 3 Ms (A/m) λs J (J/m )3

−10 2 1.6·106 −10 5 0

L. Bernard, et al. Journal of Magnetism and Magnetic Materials 487 (2019) 165241

7



Fig. 8. Maps of (a) ∂
→
H( )ε xxx (106 A/m), (b) number of converging iterations of the Newton–Raphson algorithm, (c) logarithm of the relative error on the magnitude of

the magnetic flux density, (d) logarithm of the Frobenius norm of the total displacement, as functions of components Bx and By of the magnetic flux density, with
icosphere of order 4.

Fig. 9. Maps of (a) ∂
→
H( )ε xxx (106 A/m), (b) number of converging iterations of the Newton–Raphson algorithm, (c) logarithm of the relative error on the magnitude of

the magnetic flux density, (d) logarithm of the Frobenius norm of the total displacement, as functions of components Bx and By of the magnetic flux density, with
icosphere of order 6.
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configuration would turn out to be a parallel traction/orthogonal
compression when the magnetic field rotates π/4 rad (in a 2D config-
uration). From these considerations, the differentiation and integration
of the analytical SMSM may be more conveniently performed numeri-
cally. The inversion may also be performed using algorithms that do not
need the evaluation of derivatives.

4. Association with Jiles-Atherton magnetic hysteresis model

The original Jiles-Atherton (JA) approach [36] was already ex-
tended to consider some anisotropy and texture effects by using a
generalized anhysteretic magnetization [37,38]. Here, a SMSM is used
to provide a description of the anhysteretic magneto-elastic behaviour
and, hence, to include anistropy, texture and mechanical stress effects.
A vector extension of JA model, as proposed in [39], is defined by the
magnetization increment which can be expressed as

→
=

→
+

→
χdM dH c dMhys f e (46)

The effective magnetic field is
→

=
→

+
→

H H βMe hys, and
→
M is an an-

hysteretic component function of
→
He. The tensor χf is defined by:if

→ →
>χ dH. 0f e ,

= → → ⊗ →−χ χ χ χ| |f f f f
1 (47)

else,

=χ 0f (48)

where → =
→

−
→

χ M M( )f k hys
1 . As shown in [40], an explicit expression of

the hysteretic differential susceptibility is then

=
→

→ = − + +−χ I χ χ χ χ
dM

dH
β c c( ( )) ( )hys

f an f an
1

(49)

From this, the direct JA model can be built by numerical integra-
tion. Similarly, the inverse JA model can be built from

=
→

→ = − − + +−ξ I χ χ χ χμ
dM

dB
β c c( ( 1)( )) ( ).hys

f an f an0
1

(50)

It can be noticed that, if c and β are scalar, then

= + −− −χ χ χ Ic β( )f an
1 1 (51)

and this tensor is symmetrical if χan is also symmetrical. This property
is interesting for an application in the finite element method but it is not
a necessary condition for hysteretic materials.

The anhysteretic magnetization and differential susceptibility can
be obtained from a SMSM in order to account for the applied me-
chanical stress. Considering the effective field

→
He and the constant ap-

plied stress σ0 as input parameters, we have:

→
=

→ →
σM M H( , )an e 0 (52)

=
→

→
→

χ σdM

dH
H( , )an

e
e 0

(53)

If the macroscopically equivalent crystal SMSM is used with
=W 0α

an and =σ 00 , the obtained magnetization is the same as the one
given by the usual Langevin function (except for numerical differences
due to integrals evaluation) and the JA model ”a” parameter is related
to the ”As” parameter of the SMSM by

=A
μ M a

1 .s
s0 (54)

The introduction of the SMSM in JA model allows to account for the
effect of multiaxial stress on the steepness of the loop. However, it may
not be sufficient to describe the effect of stress on the shape of the
hysteresis loops and on the losses. One possible solution consists in

considering variations of the so-called pinning parameter k, which is
strongly related to hysteresis losses [2].

Here we consider the parameter k constant and we focus on the
magnetostriciton hysteresis under a constant applied stress (σ0). We
define an anhysteretic magnetic field (

→
Han) such that the corresponding

output of the SMSM is equal to the output of the hysteretic model:

→ →
=

→ →
σ σM H M H( , ) ( , )hys an0 0 (55)

Dropping the constant parameter σ0, the differential of the magne-
tization is:

→ →
=

→

→
→ → →

dM H dM

dH
H dH H( ) ( ) ( )hys

an
an an

(56)

In this equation
→

=
→

→ χH( )dM

dH
an an

an
is the anhysteretic differential sus-

ceptibility calculated from the SMSM model at the current value of
→
Han.→

Han can be obtained by integration of

→
=

→−χdH dM .an an hys
1 (57)

The hysteretic magnetostriction is obtained (together with χan) from
the SMSM model by

→
=

→
ε σ ε σH H( , ) ( , )hys

μ μ
an0 0 (58)

This procedure can be applied identically to the direct or inverse
version of the JA-SMSM.

The same non-oriented Fe-3%Si material as in Section 2.3 is con-
sidered as an example of hysteretic magneto-elastic behaviour. The
parameters of the JA part of the model are given in Table 3. The hys-
teresis loops obtained for magnetization and magnetostriction in the
direction of the applied magnetic field for different values of stress are
shown in Fig. 10. These curves are in good accordance with the ex-
perimental results [32]. Despite the discrepancies that appear when
comparing experimental and modelled behaviour for a particular value
of the mechanical stress, the model shows a good consistency con-
sidering the loop shapes and evolution trends. The experimental data
available for a particular material is generally limited to this kind of
uniaxial mechanical stress/magnetic field characteristics. On the con-
trary, the JA-SMSM is fully multi-axial and can be applied to any
magneto-elastic loading configuration. However, experimental tests
with biaxial stress and/or rotating magnetic flux density should be done
in order to check the consistency and accuracy of the model predictions.

5. Application to device simulation

The TEAM workshop problem 32 [28] presents a three-limbed
magnetic core structure with two windings and different operating
conditions (Fig. 11). This problem offers interesting characteristics for
testing magnetic field analysis tools. Here, FreeFem++ [41] is used to
solve the problem with the finite element method. In figure 11 the
proportions of the true device are not respected. The true core structure
has an almost square external frame of 175mm side length. The width
of the limbs is 30mm. The model is developed here in 2D and extended
in order to make possible the application of stress on the core structure
and to simulate its influence on the magnetic field and magnetostriction
distribution. The core structure is assumed to be under vertical (i.e. in
the limbs direction) compressive conditions corresponding to an im-
posed vertical displacement on the upper side, a null y-displacement on
the lower side, and a null x-displacement at the lower left corner

Table 3
Jiles-Atherton parameters for the non-oriented Fe-3%Si material.

β k (A/m) c
−10 4 200 0.4
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(Fig. 11). The resulting mechanical stress is computed using the finite
element method and with the help of FreeFem++ [41]. A usual dis-
placement (→u ) formulation of the plane stress static elasticity problem
is considered. The discretized weak form of the problem is summarized
by the following equations:

∫ → =σ grad v d: Ω 0s ij CΩC (59)

= →σ C grad u: s (60)

→ = →
= =u vΣ Σi

N
j ij ij1 1
2C u (61)

where ΩC is the core region, →vij are the vectorial nodal test and inter-
polation functions in direction j at node i grad, s is the symmetrical
gradient operator, C is the fourth-order stiffness tensor, iju is the degree
of freedom for the j-component of the displacement at node i, and NC is
the number of nodes of the core part of the mesh. The elastic properties
of the material are assumed isotropic (Young’s modulus =E GPa210
and Poisson’s coefficient =ν 0.29). For an imposed displacement of
− μm40 , Fig. 12 presents the distribution of xx- and yy- components of
the stress. The shear stress (xy-component) is not shown but is smaller
(less than MPa13 ) and concentrated near internal corners.

Neglecting the stress induced by magnetostriction, the magnetic
problem is then solved considering a constant applied stress. Tangential
magnetic field conditions are considered on the external boundary of
the computational domain (Fig. 11). The external boundary is 45mm
distant from the core. By comparison with the reference results of [28],
the relative proximity of this boundary did not show significant impact

on simulations (leakage flux is small in this application). A time-step-
ping forward Euler scheme is used. At each time step, the solution in-
crement is firstly computed considering the fully linearised problem
(differential permeability or reluctivity [42,43]), and then a non-linear
Newton–Raphson iteration might be applied. The voltage source (Vi)
and series resistance =R 11.1Ωs connected to coil i are coupled to the
magnetic finite element model by the circuit equation which leads to
the definition of the following residual:

= − − −V e
t

R I
Δ

(Φ Φ )c
i i i s i

0iR (62)

for ∈i {1, 2}, where e is the thickness of the core, Ii is the current in the
coil, tΔ is the value of the time step, Φi and Φi

0 are the total magnetic
flux in the coil per unit length at current and former time step, re-
spectively. For the magnetic vector potential formulation, the residual
relative to the finite element model is

∫ ∫=
→ → −

→ →H rot w d J w d· Ω · Ωi
A

i iΩ

1

Ω

1
R (63)

where Ω is the whole computational domain, →wi
1
is the vector (parallel

to z-direction) nodal test function and
→
J is the electric current density.

For the magnetic scalar potential formulation, the residual relative to
the finite element model is

∫=
→
B grad w d· Ωi

ϕ
iΩ
0R (64)

where wi
0 is the scalar nodal test function for node i. The magnetic field

of Eq. (63) is related to the magnetic vector potential (
→
A ) by

Fig. 10. Hysteresis loops for the magnetization and magnetostriction as a function of the magnetic field under unixial stress.

Fig. 11. Scheme of the transformer with boundary and finite elements/circuit coupling conditions.
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→
=

→
−

→
H ν rot A Mhys0 (65)

and the magnetic flux density of Eq. (64) is related to the scalar mag-
netic potential ϕ by

→
=

→
− +

→
B μ T grad ϕ M( )hys0 (66)

where
→
T is a magnetic source field which verifies

→
=

→
rot T J . In terms

of the unknown currents (Ii), we have

→
=

→
=J I JΣi i i

n
1

2 (67)

and

→
=

→
=T I TΣi i i

n
1

2 (68)

where
→
J i

n
and

→
Ti

n
are constant normalized vector fields imposed by the

coils geometry. These fields are also used to express the total flux in
each coil per unit length, from the unknows,

Fig. 12. Distribution of stress.

Fig. 13. Effect of stress on induction in the upper T-joint (left) and magnetostriction at the center of left limb (right).

Fig. 14. Effect of stress on the distribution of the yy-component of the magnetostriction.
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∫=
→ →
A J dΦ · Ωi i

n

Ω (69)

or

∫=
→ →
B T dΦ · Ωi i

n

Ω (70)

depending on the formulation. The discretized scalar potential and
magnetic potential are

= =ϕ p wΣi
N

i i1
0 (71)

and

→
= →

=A a wΣi
N

i i1
1

(72)

respectively, where pi and ai are the corresponding degrees of freedom
and N is the total number of nodes. Linearisation or application of the
Newton-Raphson procedure involves the differentiation of the residuals
with respect to the unknowns. In particular, the Jacobian matrix in-
cludes the following derivatives, obtained by the chain rule:

∂
→

∂
=

→

→
∂
→

∂
= − →I ξH

a
dH

dB

B
a

ν rot w( )
j j

j0
1

(73)

∂
→

∂
=

→

→
∂

→

∂
= +I χB

p
dB

dH

H
p

μ grad w( )
j j

j0
0

(74)

where ξ and χ are given by the JA-SMSM presented in Section 4. For
the non-linear iteration, the material behaviour is evaluated using an
adaptive number of substeps (determined by a fixed sub-increment of
the applied field). An adaptive relaxation is also applied using the
technique presented in [44,45].

The configuration of the TEAM workshop problem 32 case 3
(Fig. 11) is chosen because it creates regions with rotational field (in the
so-called T-joint regions) but no minor loops (not well represented by
the JA model). In the T-joints, the rotational characteristic of the
magnetization and the associated magnetostriction may also have sig-
nificant effects on the total strain [4]. The peak value of the voltage on
the coils is set to 22 V in order to reach an induction of around 1.3 T in
the limbs, considering the material properties modelled as presented in
Section 4 when no stress is applied. It should be noticed that each coil is
connected to a voltage source through a series resistor of relatively
large value (11.1Ω). At the considered frequency (10 Hz), these resistors
lead the transformer to operate as a current fed one.

The magnetostatic formulations in terms of magnetic reduced scalar
potential and vector potential were tested. The reduced scalar potential
formulation showed a good stability of the time-stepping resolution
using the fully linearised approach, but the application of the non-linear
resolution algorithm led to divergence in most cases. This might be due
to problems of accuracy of the solution using the reduced scalar po-
tential with source field inside the magnetic material [46]. On the other
hand, the vector potential formulation showed a poor stability when
using the fully linearised approach, but the application of the non-linear
resolution algorithm had good convergence properties and stabilized
the time-stepping scheme. Here, only the results obtained with the
vector potential formulation are presented.

After a magnetizing phase, the system is simulated for one period of
the voltage on the coils. Fig. 13 shows the locus of the magnetic in-
duction for a point in the upper T-joint and the yy-component of the
magnetostriction for a point in the middle of the left limb (P1 and P2,
respectively, shown in Fig. 12). The curves corresponding to the cases
without mechanical stress and with the mechanical stress computed
before are presented. At the considered point in the T-joint, the stress is
mainly compressive in the y-direction which modifies the rotation of
the induction reducing the y-component variations. At the considered
point in the left limb, the stress is mainly compressive in the direction of
the magnetic field, which results in a greater yy-component of the
magnetostriction. Finally, the distribution of the yy-component of the

magnetostriction for the last time step of the simulation (corresponding
to a maximum value of the left coil voltage) considering the stress is
shown in Fig. 14 together with the difference with the no-stress case. It
is shown that the applied stress strongly modifies the magnetostriction
distribution.

6. Conclusion

The simplified multiscale models are shown to be flexible and ro-
bust tools for the representation of magneto-elastic couplings in device
analysis. From a small set of material parameters, the models are able to
give physically representative results for a wide range of applied
loadings(Figs. 5–7). In terms of numerical evaluation, the robustness of
the model principally depends on the chosen discretization parameters
(e.g. icosphere order, number of time-steps for the association with
Jiles-Atherton model). These parameters should be defined according to
each specific application, finding a good compromise between numer-
ical robustness and computational cost. The finite element application
example shows that magnetic field simulations can be performed con-
sidering applied stress and rotational magnetic field region. Con-
vergence problems were encountered, but consistent simulation results
could be obtained with both scalar and vector potential formulations.
This type of problems associated with hysteretic magnetic field simu-
lations are commonly reported in the literature using other types of
material behavior models. Thus, the proposed models constitute pos-
sible alternatives with their specific strengths. The complexity (in terms
of physical representativeness and numerical evaluation) of the model
can be easily adapted to the needs of a particular application and the
physical consistency of the results is provided by the approach based on
the energy balance of the material. All the features needed for the ap-
plication of such models in magnetic field analysis tools are detailed.
With these tools, the SMSMs offer new possibilities for the analysis of
the effect of multiaxial mechanical stress on electromagnetic devices
and for the analysis of magneto-mechanical transducers based on
magneto-elastic couplings.
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