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In this work, the simplified multiscale model (SMSM) is incorporated into the energy-based (EB) quasi-static vector hysteresis model
to represent the anhysteretic part of the material behavior. This approach enables the inclusion of effects such as mechanical stress,
magnetostriction, material anisotropy, and crystallographic texture. By integrating the anhysteretic model into the EB framework,
it becomes possible to account for dissipative effects (in our case, domain wall pinning) while utilizing detailed material information.
To solve the EB model in conjunction with the SMSM, two approaches are pursued: a numerical optimization of a free energy
functional and an explicit approximate variant, known as the vector play model (VPM). Both methods are compared in terms of
computational performance, and the differences in results are demonstrated through the simulation of the cross section of an electric
machine. Furthermore, the local as well as global behavior is investigated. It is shown that in an electrical machine configuration,
the VPM provides a very satisfactory approximation to both local and global responses, together with a reduced computation time
compared to the EB model. In the provided application case, it is shown that a shrink-fitting operation can lead to a 30% increase
in the overall hysteresis losses.

Index Terms— Energy-based (EB) hysteresis, finite element (FE) modeling, multiscale model (MSM), numerical optimization, vector

hysteresis, vector play model (VPM).

I. INTRODUCTION

HE accurate simulation of modern electrical devices,

such as electric machines and transformers, requires
advanced material models that capture a wide range
of effects beyond simple ferromagnetic saturation. This
includes the impact of mechanical stress, magnetostriction,
material anisotropy, the crystallographic texture, and grain
morphology of materials. Standard models (material models
used in commercial software) often fail to adequately account
for these complex interactions, necessitating the use of more
sophisticated approaches. Accurate modeling of these effects
is critical in various applications, such as electrical machines
and transformers, where material behavior directly influences
device performance.

For instance, residual stresses in stator cores of elec-
tric machines can significantly affect magnetic properties,
as demonstrated in [1]. Similarly, the mechanical effects
caused by cutting electric steel sheets, commonly used
in e-drives and transformers, influence the electromagnetic
performance of both non-oriented [2] and grain-oriented
steels [3]. Additionally, core losses can change when
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shrink-fitting techniques are employed in assembly, as shown
in [4], [5], and [6]. These practical examples highlight the
importance of incorporating a broad range of effects into
material models to ensure accurate simulation results.

This article focuses on the integration of the simplified
multiscale model (SMSM) into the energy-based (EB) vector
hysteresis model. The SMSM is a versatile tool capable of
accurately modeling a wide variety of material behaviors,
including the magnetoelastic effect, magnetostriction, and the
effects of texture. On its own, the SMSM provides a com-
prehensive representation of reversible (anhysteretic) material
behavior, including the response of materials to both mechan-
ical and magnetic excitations (see [7], [8] for further details).
On the other hand, the EB vector hysteresis (EB) model
excels at capturing dissipative effects (hysteresis) and can
model both isotropic and anisotropic dissipative behavior [9].
The EB model is highly flexible, allowing for increasing its
precision (ability to be fit to real measurements) through
the inclusion of additional material parameters called pinning
forces, which can be efficiently fit using a certain probability
density [10] and there exist adaptions such that rotational
losses are depicted correctly [11], [12], [13]. This model
considers quasi-static domain wall pinning as the main source
of dissipation, neglecting, following the naming convention
of Bertotti, excess losses resulting from microscopic eddy
currents on the grain and sub-grain lengthscale. Furthermore,
no rate dependence of the hysteretic description is used,
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making the material model(s) used in this contribution purely
rate independent. Importantly, the EB model has an efficient
solution scheme, making it well-suited for device simulations.
Furthermore, a simplified variant of the EB model exists,
the approximate vector play model (VPM) [14], which is an
explicit and faster analytical approximation, providing com-
putational efficiency while maintaining acceptable accuracy
under certain conditions, which is also shown in this work.

A. Modeling Aspect and Main Contribution

The effects discussed above, such as magnetoelasticity,
magnetostriction, and material anisotropy, are modeled using
the SMSM [7], [8], a reduced version of the full multiscale
model (MSM) [15]. The SMSM is integrated into the EB
vector hysteresis model to provide a physics-based approach
for modeling anhysteretic (reversible) behavior, while the EB
model captures dissipative (irreversible) effects. This decou-
pling of reversible and dissipative behavior allows for the
flexible and accurate representation of material behavior under
various conditions. This approach replaces the classical atanh
or double Langevin function, typically used to model the
anhysteretic behavior in EB models (see [9], [16], [17]) and
opens the field to a more physics-based approach to model
effects influencing the anhysteretic behavior, using the SMSM.
Similar work has been carried out in [6] where the SMSM
was used as the anhysteretic function in the Jiles Atherton
hysteresis model, or in [18] where the SMSM together with
the explicit VPM were used.

In this work, we follow in a very similar direction by
including the SMSM in the (fully optimized) EB vector
hysteresis model as well as in the VPM, whereas the latter
one can be found in [18]. However, the primary focus of this
article is the efficient numerical inclusion of the SMSM into
the EB framework, and finally incorporating both approaches
(SMSM + VPM and SMSM + EB) into a finite element
(FE) formulation, extending the previous work of [19] and
[20]. Throughout our examples, we assume an ideal poly-
crystal, that is, no preferred magnetization direction, which
resembles an ideally isotropic non-oriented electric steel with
negligible crystallographic anisotropy. This choice stems from
typical industrial-grade non-oriented steels, where any residual
anisotropy is small relative to, for instance, grain-oriented steel
with Goss texture. However, crystallographic anisotropy can
easily be introduced via the anisotropic free energy functional,
introduced later on. The only source of anisotropy considered
in this work results from mechanical loading. By doing so,
a comparison between the very inexpensive and fast explicit
VPM approach and the solution of the fully optimized EB
model can be obtained not only from the material model point
of view but rather from a more practical, application-oriented
simulation side.

The inclusion of the SMSM into the EB framework
builds on the idea of reformulating energy minimization
as the search for the angle of the irreversible field [9].
We derive and implement a suitable minimization procedure
using Newton—Raphson and quasi-Newton methods, which is
compared against the explicit VPM approach.

Scope and Experimental Validation: The present work is
intentionally methodological. We demonstrate how the sim-
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plified magnetoelastic MSM can be embedded within an
EB vector hysteresis framework and explore the impact of
shrink-fitting stress numerically. A rigorous device-level vali-
dation requiring the separation of hysteresis, eddy current, and
excess losses, control of the mechanical stress state in rotating
parts, and accurate voltage or torque measurements lies outside
the scope of this article. Material level verifications of the
SMSM + VPM have already been reported in [18].

II. MODEL DESCRIPTION

In this section, the two primary models used in this work,
the SMSM and the EB vector hysteresis model (together with
its VPM approximation), are briefly introduced. The goal
is to establish consistent and precise nomenclature for both
models to improve clarity and reproducibility. It is important
to note that both models already exist, and the focus of this
article is not on further developing these models but rather on
developing a way to couple them for practical use.

A. Simplified MSM

The SMSM, as described in [8], provides a computationally
efficient alternative to the full MSM [15], [21]. To avoid the
complexity of the full MSM, the SMSM models the material
as a fictitious single crystal, simplifying the treatment of local
variations in magnetic field strength H and mechanical stress
tensor o at the grain and domain levels. This allows for a
domain description based on magnetic domain families, where
each domain family shares the same orientation o.

In a domain family with orientation &, the domain magne-
tization M, and the domain magnetostriction strain tensor €
are defined as

M (o) = Mser, fﬁ(a)=%/1s(a®oc—él) (D

where M, denotes the saturation magnetization and Ay the
maximum magnetostriction strain. Each domain is assigned
a certain domain volume fraction

eXp (_AsGa(H, o, (x))
J:iir(s3)(exp (—AGy(H,0,a)))da

where Ag = const. is a constant related to the permeability in
the low-field region and G, represents the total free energy
of domain family o (comprising anisotropy, magnetic, and
magnetoelastic') contributions and the integral f dir(S3)(')du is
evaluated over all directions of the unit sphere dir(S>).

The total free energy G, can be given, repeating [8], as the
sum of magnetic—G;n e elastic-Gzl, and anisotropic-G3' free

energy, whereas the different contributions can be defined as

fo(H,0) =

2

Go(H,0,a) = G™(H,a) + GZ(0, @) + G (a)
=—uoH My —0 € + G (). 3)

The anisotropic free energy G%' depends on the type of
crystal (uniaxial, biaxial, and cubic anisotropies) that is used.
However, if one considers a perfectly arbitrary and equally

'Note that there are different versions of the magnetoelastic energy
and magnetostrictive strain tensor, including different effects, like the
non-monotonicity of the permeability over the applied stress state; see [18].
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distributed orientation of (enough) grains, there is no macro-
scopic anisotropy, resulting in a vanishing anisotropic free
energy. In the present work (mechanically unloaded), material
is considered isotropic; therefore, G is set to zero.

The macroscopic magnetization M and magnetostrictive
strain tensor € are computed by weighting each domain fam-
ily with its volume fraction and integrating over all directions
on the sphere

M, () fo(H, 0o, 0)da,
dir(S?)

¢“(H, o) = / e"(a)fo(H, 0, a)da. 4)
dir(S3)

M(H, o) =

To avoid the complexity of the continuous Boltzmann
distribution and integration, the continuous directions on the
sphere are discretized using a tri-meshed sphere with uni-
formly distributed nodes (also known as an icosphere or
icosahedron), as detailed in [8]. In the present work, two
different versions were tested, one with a meshed sphere using
2562 directions and a 2d simplification with discretizing a
circle using 360 directions. Even though the spherical version
includes significantly more directions, compared to the circle
version, the performance difference was negligible due to the
vectorization used in the implementation of the SMSM.

The discrete domain volume fraction becomes (now it
is a discrete volume fraction associated with direction
o; for i e N)

exp (—AsGy(H, 0, ;)

fo(H,0)~ f,(H,0) = > ions €xp (—AGo(H, 0, )

®)
and the macroscopic quantities are approximated as
M(H, o)~ M(H,0) = > My(&)fo(H, 0, ;)
ieNs
€“(H,o)~e"(H,0)= Z €, () fu(H,0,0;). (6)
ieNs

For clarity in the algorithmic description, the SMSM is
represented as the operator SMSM:(R?, R3*3) — (R?, R3*3)

(M, €*) = SMSM(H, o) 7

where the necessary material parameters for the SMSM were
omitted in this definition for a more concise notation. However,
they can be stated as follows.

1) As, which is composed of the initial susceptibility xo of
the stress-free anhysteresis curve and the saturation
magnetization Mg, computed by Ay = 3xo/ (MOMZ)
(from [15]). Both x¢ and M; can either be found in the
literature or can easily be extracted from measurements.

2) Magnetostriction parameter A can be found in literature
or extracted from measurements via strain gauges.

3) Anisotropy constants, depending on whether a smired
anisotropy from an underlying crystallographic texture
or other influencing factors is considered or not (see [8]
for further details).
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Fig. 1. Example of an anhysteretic M—H curve (saturation curve) and the
corresponding free energies (F denoting the Helmholtz free energy and G
denoting the Gibbs free energy).

B. EB Vector Hysteresis Model

Without delving into the thermodynamics-based derivation
of the EB vector hysteresis model or exploring the various
formulation approaches, for example, the variational versus
the differential/inclusion approaches, as discussed in [16] and
[22], we adopt the variational approach with some conceptual
modifications compared to [16]. These modifications, detailed
in [12], frame the problem as an incremental free energy min-
imization, similar to elastoplastic formulations [23], [24], [25]

arg min {_AGZ::zP(Hrev) - MOMp : (Hrev - Hrev,p) } (8)
Hywe A -

L(H ey)

where the subscript [-], denotes the state variables in the
previous step, as hysteretic behavior requires information
from the past. The term H ., refers to the reversible part of
the total magnetic field strength H, while M represents the
magnetization vector. The term AGZ::F describes the change
in the (reversible/anhysteretic) Gibbs free energy between the
current and previous steps, that is, between the fields H ey p
and H .. The set A denotes a sphere (in the case of isotropic
dissipation) with radius «, often referred to as the pinning
force. If the dissipation behavior is strongly anisotropic,
which is the case for, for example, oriented electric steel with
Goss texture, this pinning force can be considered tensorial,
with the additional cost of a more elaborate identification in
several directions. The optimization problem ensures that the
vector difference H — H,., remains in the sphere, meaning
that the irreversible field can never be larger than «. The
expression for the functional £(H ) will be used for a more
concise notation in the subsequent optimization steps.

Regarding the description of the Gibbs free energy [same
quantity as in the SMSM, e.g., in (2)], this can be stated as a
functional of the reversible field
H. ~ ~

M(HI’SV) dHl'CV (9)

Hyyp

—AGyS (Hwe) = 1o
as illustrated in Fig. 1.

The shape of the saturation curve suggests that typical
approximation functions such as arctan, coth, and tanh are
commonly used for isotropic behavior in hysteresis mod-
els [26]. Other approaches involve interpolating or fitting
M-H (or B—H) curves at various excitation angles [27], [28],
or using magnetic energy and co-energy expressions [29],
[30]. However, such approximations can impose assumptions
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on the anhysteretic curve, obscuring the relationship between
the model parameters and the material’s physical properties.
To overcome this, the SMSM is used as the description of the
anhysteretic behavior, as detailed in Section III. To simplify
the initial development, we start by imagining an analytic
approximation of the anhysteretic curve (such as arctan) before
introducing the SMSM in Section III. For clarity, we distin-
guish two key cases in (8).

1) Case 1: The excitation field H is such that the irre-
versible field remains within the sphere of radius «.
In this scenario, no change in magnetization occurs,
so no optimization is needed. The reversible field H .y
remains unchanged, and the irreversible field is calcu-
lated as Hy, = H — H .

2) Case 2: The excitation field H causes the irreversible
field Hyy = H — H,., to reach the sphere’s boundary.
In this case, the reversible field vector must be adjusted
such that H;, stays within the sphere. This introduces
the need for solving the optimization problem in (8).
The constrained problem can be reformulated into an
unconstrained one by recognizing that the length of the
irreversible field vector is «, resulting in Hj, = ke,
where e, is the direction vector of the irreversible field.
Thus, instead of solving for the reversible field, we solve
for the direction of the irreversible field. This idea, first
proposed in [9], leads to the following unconstrained
minimization problem

o (Bimr) _ MOMp (H — ke — Hrev,p) }

rev,p

arg min{ —AGpy

Cirr

L(eirr)
(10)

The direction vector of the irreversible field can easily be
parametrized for the 2-D and 3-D cases as

. T
eirpp = (COs @, sin @)

eirr3.p = (cos @ sin B, sin ¢ sin B, cos T

(1)

with ¢ € [0,27[ and ¥ € [0, w[. For solving this system,
a Newton—Raphson algorithm can be employed since the
AGgep term just includes the analytically integrated anhys-
teretic curve, which can easily be derived with respect to the
irreversible direction angles, as described for 2-D in [9] and
for 3-D in [12].

C. Vector Play Model

Although the VPM is not new and has been previously
described in the literature (with [31] introducing the vector
stop model and [32] extending it to include the vector stop and
vector play hysteron), it is briefly introduced here to ensure
consistent and unified nomenclature throughout this article.
The VPM serves as an explicit, simplified approximation of
the fully optimized EB model, providing a fast update rule for
the reversible field H,., based on the new excitation H and
the previous reversible field H ey

H™=H - o A= Hrewp
|H - Hrev,p|

This update rule is derived using the following simplifying
assumptions.

12)
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1) Approximation 1: The direction of the magnetiza-
tion change (M — M ey)/(IM — M ev])) is identified
as the direction of the irreversible field e, =
(H = Hyevp)/(1H — Hyeyp)).

2) Approximation 2: Replace the current reversible field

H,., by the previous reversible field Hy, to obtain

VPM
H rev *

While these approximations mean that the VPM does not
fully solve the energy minimization problem of the EB model,
it still provides a fast and computationally efficient approach.
Furthermore, due to the relatively small differences between
the VPM and the full EB model for typical non-oriented
electrical steel materials, the VPM often serves as an excellent
starting point for solving the full optimization problem in (10).
Approximation 1 constrains only the change of the magne-
tization M , the magnetization vector M itself remains free
to orient according to the minimization of the reversible
thermodynamic potential. Consequently, the characteristic
rate-independent phase shift between H and M and hence
the quasi-static hysteresis loop area, is fully preserved. In the
uniaxial limit, where no directional change occurs, the EB
reduces exactly to the VPM, so that both models coincide.

III. OPTIMIZATION PROCEDURE OF SMSM + EBM

Introducing the SMSM from Section II-A as a physics-based
alternative to the anhysteretic approaches described in
Section II-B involves replacing the direct relationship between
magnetization and the reversible field M (H,,) with the
SMSM operator SMSM(H .y, o) from (7). This change results
in different independent parameters for the Gibbs free energy
as a function of the reversible field (or rewritten in terms of
the direction vector of the irreversible field), as well as the
applied mechanical stress state
arg min { —AG =" (eir, 6) — oMy - (H —rc€ie— Hievp) }.

€irr

L(eir,0)
(13)

This formulation complicates the integration in (9), par-
ticularly when both the magnetic field (through e;,) and
the mechanical stress state vary simultaneously. It also
complicates the differentiation needed for gradient-based
optimization methods. This scenario represents the most chal-
lenging case in solving the optimization problem and is
referred to as Case MagMech.

A significant simplification arises when the mechanical
stress state is considered fixed while the magnetic field varies.
This situation, referred to as Case PureMag, greatly reduces
the complexity of the numerical procedure.

Important Notes

1) Convexity: It is neither assumed nor necessary to con-

sider the convexity of the functional L(ej;,, 0), meaning
the solution obtained is guaranteed to be a local mini-
mum, but not necessarily the global one. However, the
numerical examples in Section V will demonstrate that
the VPM provides such a good starting value that it
always lies within the basin of the global minimum (for
the tested material parameters, representative of typical
electrical steel).
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2) Reversible Mechanical Process: For the loading case
with varying mechanical stress and a constant magnetic
field, no dissipation is assumed to occur. This process
is considered fully reversible and is captured entirely by
the SMSM without the need for an additional dissipative
mechanism. Readers interested in a dissipative process
for mechanical loading similar to the magnetic case may
refer to [18], but this is beyond the scope of this work.

3) Numerical Methods: The proposed numerical algo-
rithms in Sections III-A and III-B are gradient-based,
utilizing a quasi-Newton method, Broyden—Fletcher—
Goldfarb—Shanno (BFGS) for Case MagMech and
Newton—Raphson for Case PureMag. While fixed-point
methods could also be used, they typically converge
more slowly compared to gradient-based methods.

A. Numerical Optimization in Case MagMech

For Case MagMech, the BFGS algorithm, a quasi-Newton
method, is employed, but other algorithms, such as Davidon—
Fletcher—Powell (DFP), could also be used. However, special
attention must be given to an effective line search handling.
Before presenting the BFGS algorithm, we introduce some key
remarks and findings regarding the derivatives of the functional
»C(e irr» O').

1) Jacobian of L(e;,, 0 ): Let us start with the derivative of
L with respect to the direction of the irreversible field. In this
case, the parameterization using one angle ¢ resulting in a
2-D setup is used due to a more concise notation, although the
extension to 3-D with an additional angle, like in Section II-B
is straightforward

9L(eirr, 0)
dp
Hey
8AGHrev.p(HreV’o.) 0H oy d€irr
=— . — woMp - | —«
O0H oy o
-M

3ein-
= oMy — M) -k = (14)
de

where the derivative of the direction vector with respect to ¢
is given by

8eirr
de
The derivative with respect to the mechanical stress state o is

= (—sing, cosp) . (15)

oL (e, o) _ aAGZSVP (H ey, 0) _

do do =< (16)
Thus, the Jacobian can now be stated as
_ . i dein
J = [“O(MP eiw) K 3«)} (17)

which requires evaluating the SMSM model at the current
magnetization and magnetostrictive strain for the current
reversible field (corresponds to the applied excitation field)
and the current applied mechanical stress state (M, €") =
SMSM(H ey, 7).
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2) Hessian of L(e;, 0 ): For the Hessian H, the derivatives
of the Jacobian (17) are needed. However, obtaining the full
analytical derivatives of the SMSM model is challenging for
Case MagMech, so we employ the BFGS algorithm, which
approximates the Hessian. The algorithm proceeds as follows.

1) Initial Guess: Obtain an initial guess for ey, by eval-
uating one step of the VPM (12) and one step of the
SMSM(H .y, 0) with the applied 0 and H,.y, = H —
ke to obtain €.

2) Set Initial Values: Set xo = (eiy, €*)" and initialize the
inverse of the Hessian to be the identity matrix Hy = 1

3) Iterate: For each iteration k — k + 1,, perform the
following.

a) Obtain new search direction p, = —H J.
b) Perform a linesearch to obtain the linesearch
parameter o (discussed later).
c) Update the solution x;41 = xr + ap; .
—

Sk
d) yi = Jky1 — Tk with J; from (17).
e) Update the inverse Hessian using the BFGS update

formula
Hisr = Hy + (Sljyk + y,—fHkyk) (s;sk)
(skTyk)2
T T
_ (Hiyisy T—f- skyi Hr) s
Sk Vi

A crucial part of this process is the line search, which
ideally aims at minimizing the functional of the next step
Liy1 = L(xx + ap) with « as the independent variable.
Although there are many different methods to solve this
problem, a robust and rather fast method is following [33],
where the new functional is derived with respect to «, which
gives, through the application of the first order optimality
condition:

0Ly41
aozk

oL ox
=( k+l)_k:u7k1|Hk\7k:G:0

19
8xk 30lk ( )

which can either be solved using Brent’s method or by
evaluating G for a few o parameters between zero and one
and choosing the one with the smallest resulting G, which is
a quick approximation to the optimal linesearch parameter.

B. Numerical Optimization in Case PureMag

In Case PureMag, where the mechanical stress state o is
constant, an analytical derivative of the magnetization with
respect to the reversible field exists, as detailed in [8, Sec. 3.2].
Consequently, it is not necessary to approximate the Hessian
via quasi-Newton methods. The second derivative of L(ej)
(since stress is not a variable in this case) is given, in the 2-D
case with ¢ as parameterization, as

9’L(eirr, 0)
92
826’1” Bein oM aem 2
= I’LO(MP — M) - K a(pz % aHrev %K’ . (20)
——

from [8]
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Furthermore, the Jacobian consists now only of the derivative
with respect to ¢, which is given in (14).

The Newton—Raphson algorithm can now be given as fol-

lows.

1) Initial Guess: Obtain an initial guess for ej.o by eval-
uating one step of the VPM (12) and one step of the
SMSM(H .y, 0) with the applied 0 and H,.y, = H —
K eirr, which yields the initial magnetostrictive strain €/ .

2) Iterate: For each iteration k — k + 1, perform the
following.

a) Compute the new search direction

-1
2L (eirr, 0) L (e, o)
Pk =
Pk 8g0

92
b) Perform a linesearch to determine the linesearch
parameter « (similar to the method used in Case
MagMech).
c¢) Update the solution for the next iteration ¢;y; =
Yk + api.

2L

Pk

IV. COMPOSITE MODE

The dissipation models described in Sections II and III
cannot fully capture the real behavior of magnetic materials
because they rely on a single pinning force «. This implies
that once the applied magnetic field exceeds the pinning
force, the magnetization changes suddenly. However, in reality,
magnetization changes occur on a much finer scale, leading to
smoother transitions observed in actual hysteresis loops.

A more accurate representation of the real material behav-
ior is achieved by introducing multiple pinning forces with
varying magnitudes. This is a common approach in EB
models, where the magnetization is calculated for several
pinning forces. The overall magnetization is obtained through
a weighted superposition of these individual contributions

N
M = Z O MO
i=0

(22)

where N is the number of pinning forces and ) the respec-
tive weight of the ith force. These weights typically follow a
particular distribution, as described in [10].

It is important to emphasize that these parameters pertain
only to the dissipative part of the model and do not affect
the anhysteretic behavior described by the SMSM, which
governs the overall shape of the hysteresis loop. To avoid
confusion, the parameters required for the dissipative modeling
are listed below, compared to the SMSM parameters outlined
in Section II-A.

1) Set of pinning forces k := ki, k2, - . .

2) Set of weights w := wy, w3, ..., wy.

s KN-

By introducing a range of pinning forces and corresponding
weights, the model captures the gradual transitions in magne-
tization that occur in real materials, leading to a more accurate
depiction of the hysteresis loop. These additional parame-
ters make the model flexible enough to match experimental
data, enabling the identification of pinning forces and weight
distributions from real measurements. However, both sets of
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TABLE I
ANHYSTERETIC MATERIAL PARAMETERS FOR THE SMSM

MS AS AS
(A/m) (ppm)  (m®/)

1.41-106 94 1.1-102

parameters (k and w) are assumed to be independent of the
mechanical stress state. The influence of mechanical stress is
solely captured by the SMSM, representing the anhysteretic
character, and not by the dissipative hysteresis part. There
are approaches to include the mechanical stress also in the
dissipative part, resulting in a stress-induced anisotropic dis-
sipation potential, carried out (see [18]), but in this work, the
dissipation is considered isotropic and stress independent.

Finally, the computational effort grows in principle with the
number of pinning forces because each force-weight combi-
nation calls for a separate optimization. However, because
the magnetization contributions for each pinning force are
mutually independent, one can exploit both parallelization and
vectorization to mitigate the overall cost. As a result, the
runtime scales sub-linearly with the number of pinning forces
in practical implementations.

V. NUMERICAL TESTS OF THE SMSM + EB
AND SMSM + VPM

In this section, we compare the fully optimized EB model
using the SMSM as the anhysteretic model (denoted as SMSM
+ EB) with the explicit, approximative VPM also using
the SMSM (denoted as SMSM + VPM). The objective is
to evaluate the differences between the approximated VPM,
as described in [18], and the fully optimized EB model for
typical non-oriented electrical steel. The material parameters
for the SMSM are listed in Table I and are based on measure-
ments carried out in [34].

The dissipation parameters for the EB and VPM models,
listed in Table II, are taken from [12]. In [12], the pinning
forces were split into x- and y-directions, but for simplicity,
here we use an average scalar pinning force, resulting in
isotropic dissipation. These parameters were obtained for a
non-oriented electric steel sheet, based on the assumed pinning
force and weight distribution described by [10]. As mentioned
earlier, in this work, we vary only the magnetic field while
keeping the mechanical stress state fixed, allowing us to use
the analytical derivative in Case PureMag from Section III-B.

A. Example I: Rotating Increasing Amplitude

In this example, we apply a circular excitation with increas-
ing amplitude H = 50000¢/(50m)(cost, sin¢) T, designed to
test both models across a wide range of possible excitations,
as shown in Fig. 2. This excitation represents a combination of
a rotating and a uniaxial component, which helps to highlight
the differences between the models. For purely uniaxial or
purely rotating excitations, no significant differences occur
between the EB and VPM models (independent of the anhys-
teretic curve). However, this combined excitation brings out
subtle differences, although they remain minor for the chosen
material parameters of typical electrical steel.
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TABLE II
Kk AND w VALUES

(D) ()

(A/m)
le-12 0.10742
417.7675 0.070312
737.83495 0.1123
964.2539 0.15723
1134.6232 0.10547
1330.7816 0.086914
1562.82545 0.092773
1852.8662 0.058594
2192.9904 0.057617
2585.8123 0.037109
3053.7581 0.03125
3566.2705 0.024414
4070.19735 0.021484
4663.0516 0.012695
5280.0725 0.0097656
6992.98935 0.0058594
8765.8392 0.0019531
11056.891 0.0039062
14530.1853 0.0019531
27446.22335  0.00097656
6000 1
4000
2000
£
< 04
m_“\sz(mo—
~4000
—6000
—8000
—7500 —5000 —2500 0 2500 5000 7500 10000
H, in A/m

Fig. 2. Excitation H-field used for testing the differences between the SMSM
+ EB and SMSM + VPM.

1) Stress-Free: In this case, the mechanical stress tensor
o is set to zero. Using Voigt notation, the stress tensor is
represented as 0y = (0xx, Oyy, 0xy) = (0, 0, 0), where positive
values indicate tensile stress components. As seen in Fig. 3,
at most 6 iterations are required to reduce the relative incre-
mental error ||@g+1 — @rll2/|l@kll2 to the specified threshold
of 1-1071°, With the BFGS algorithm from Section III-A,
the number of iterations remains approximately the same.
In Figs. 3-5, the differences between the SMSM + VPM
and the fully optimized SMSM + EB solutions are small
(qualitatively speaking), given the material parameters and
excitation.

In the following, we increase the anisotropy by introducing
a non-zero (but constant) stress state for further evaluation.

2) With Mechanical Stress: In this case, the stress tensor is
setto be oy = (100, 0, 0) MPa, which drastically increases the
anisotropy of the material model, clearly visible in Figs. 6-8.
Although the differences between the approximated SMSM +
VPM and the SMSM + EB become more evident, it is still a
qualitative comparison and based on the results it seems as if
the region where both models differ the most is the case when
the applied field, and the magnitude of the magnetization,
are small and when they suddenly change directions, which
can be seen in Fig. 7. These direction changes are not only
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Fig. 3. Overview over magnetization, excitation, and number of iterations
for oy = (0,0, 0) MPa.
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Fig. 4. Magnetization loci for oy = (0, 0, 0) MPa.

caused by sudden changes of the excitation field but also when
a switching occurs, that is, when one of the pinning forces
is overcome, there is a sudden change in the magnetization,
which leads to slightly unphysical behavior of the SMSM +
VPM (can clearly be seen in Fig. 7 at M, ~ 1-10° A/m
and M, ~ 0.1 - 10% A/m, so that the magnetization suddenly
grows overproportionally compared to the homogeneously
growing excitation field). This behavior can also be observed
in Fig. 4, although much less visible because there is less
inherent anisotropy due to the zero-stress tensor. The Appendix
includes three additional tests with progressively increasing
and then decreasing excitation amplitudes, further illustrating
this behavior (see Appendix A). Notably, reducing the quasi-
timestep, defined as the increment of change in the magnetic
field strength input, does not reduce the discrepancies between
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Fig. 6. Overview over magnetization, excitation, and number of iterations

for oy = (100, 0, 0) MPa.

the two models. This is because the VPM faces limitations
in capturing the abrupt directional shifts that arise when a
specific threshold in pinning force is surpassed, as shown in
Appendix B. Furthermore, increasing the number of pinning
forces to better resolve these abrupt directional changes does
not result in the convergence of the SMSM + VPM model
toward the SMSM + EB model either, even with 1000 pinning
forces, as carried out in Appendix C.

Up to this point, both models (SMSM + EB and SMSM
+ VPM) have only been evaluated and compared on the local
material scale, simulating what could be seen as controlled
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Fig. 7. Magnetization loci for oy = (100, 0, 0) MPa.
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Magnetostriction strain over magnetization for oy = (100, 0, 0)

laboratory conditions. However, the more practically relevant
comparisons should occur at the device level, where these
models are used in electromagnetic simulations for engineer-
ing applications. For example, we can utilize both models
as material inputs within a field simulation, such as an FE
method (FEM) simulation of an electric machine. This is
where the true value of the models will become apparent,
as the differences between the two may influence the accuracy
of performance predictions for real-world devices. In the next
section, we extend the model comparison from the material
level to a device-scale simulation using FEM, assessing how
these models perform under more complex and practically
relevant conditions.
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Fig. 9. Geometry of the simplified PMSM with V; ;3 as the three stator
windings and E; 3345 marking the location of evaluation points where the
magnetization loci are evaluated.

TABLE III
K AND @ VALUES

W@ L@
(A/m)

le-12 025
46.7 025
933 025
140.0  0.25

VI. USING SMSM + EB AND SMSM + VPM IN AN FE
SIMULATION

To quantify the differences between the two vector hys-
teresis approaches, both models (SMSM + EB and SMSM
+ VPM) were implemented as the material model in an
FE formulation using the magnetic scalar potential approach
described in [19] and [20]. These simulations were carried out
in the open-source FE software openCFS [35]. The simulated
device is based on the cross section of a six-pole, 36-slot
permanent magnet synchronous machine (PMSM), using a 2-D
triangular mesh, as shown in Fig. 9. Inside the permanent
magnet region, a remanent flux density of B, = 0.6 T
was prescribed, and, additionally, the rotor is kept fixed,
without rotation. The stator and the rotor are composed of
electrical steel, with the anhysteretic parameters for the SMSM
provided in Table I. Due to the nature of the device considered
(laminated steel sheets), no electric conductivity was assigned
to any parts of the computational domain (no macroscopic
eddy currents).

Regarding the hysteretic parameters (set of x pinning
parameters), only 4 pinning forces and weights were used due
to a faster numerical simulation, given in Table III, which are
uniformly distributed, depicting a purely isotropic dissipative
behavior. This is in contrast to the previously used set of
k and o values in Table II (the weights and pinning forces
do not follow the distribution described in [10]). In this
case, the weights chosen were equally distributed, and the
Kk parameters were obtained by fitting to uniaxial hysteresis
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loop measurements of a non-oriented electric steel. These
dissipative parameters were used for both subsequent SMSM
+ VPM as well as SMSM + EB simulations. The air gap and
stator windings are modeled as air with vacuum permeability
1o, and a three-phase excitation is applied by prescribing the
current density in the stator windings with a frequency of
f =50 Hz. This includes a start-up phase where the current
amplitude is linearly increased. The current densities in the
three phases are defined as

for t < 0.005

o Jtdisin@rft+ @),
Ji) = [ if + > 0.005

Jisin2r ft + ¢i),

where ¢; € {0°,120°,240°} and J; = 3.468025 - 10° A/m?.
The simulation proceeds with a pseudo-time step of At =
0.001 seconds, and it is run for 300 time steps. Note that
since eddy currents and rate-dependent effects are excluded,
the excitation frequency does not influence the results.

The goal of this numerical experiment is to quantify the
impact of choosing between the SMSM + EB and SMSM +
VPM models at the device level, extending the material-scale
comparisons presented in Section V. The comparison includes
both local magnetization loci at different locations in the stator
and rotor, as well as global hysteresis losses by calculating
the area of the B-H, and B,-H, loops (as described in [36])
over one cycle (one 360° rotation of the stator field), once
the steady-state is reached. The energy loss is computed
element-wise and then summed over all stator and rotor
elements.

Additionally, to assess the significance of hysteresis models
(SMSM + EB and SMSM + VPM) versus purely anhysteretic
models, the simulations are also performed with and without
hysteresis, as well as with and without a prescribed mechanical
stress state. For the stress state, a mechanical simulation was
conducted to model a press fit of the rotor and stator sheet
onto a rod or casing by prescribing a radial displacement at
the rotor’s inner and stator’s outer edge, resulting in the stress
distribution shown in Fig. 10, with a maximum von Mises
stress of 67 MPa.

To ensure a fair comparison of computational performance
between the SMSM + VPM and SMSM 4 EB material
models in the FEM simulation, all non-linear simulations were
iterated until the L, norm of the residual reached 1-108. The
non-linear iteration scheme used is detailed in [19] and [20],
as previously mentioned.

Without the prescribed stress state from Fig. 10, the number
of global iterations required by the FEM model was approx-
imately the same for both SMSM + VPM and SMSM +
EB. However, due to the additional iterations needed for the
underlying material optimization in the SMSM + EB model,
the wall clock time was roughly four times higher compared
to the SMSM + VPM model (see Table IV). To provide an
unbiased performance comparison, all FEM simulations were
carried out without parallelization on a single CPU core and
a single thread of an apple m3 pro chip. For comparison, also
the purely anhysteretic (without hysteresis) wall clock time
was added in Table IV. When including the prescribed stress
state, the SMSM + VPM model’s iteration count remained
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TABLE IV
COMPUTATION TIMES FOR 300 TIMESTEPS WITH THE VARIOUS MODELS
UNDER NO STRESS AND WITH STRESS CONDITIONS

SMSM  SMSM+VPM  SMSM+EB
(s) (s) (s)
No Stress 5745 7820 30473
With Stress 5862 7889 51859

largely unaffected, whereas the SMSM + EB model showed
a significant increase in the number of iterations, leading to a
wall clock time approximately six to seven times higher than
that of the SMSM + VPM simulation.

A. Local and Global Comparisons

Figs. 11-15 show the local magnetization loci comparisons
between SMSM + VPM and SMSM + EB, both with and
without mechanical stress, at evaluation points E; — Es as
marked in Fig. 9. Similar to the earlier local-scale compar-
isons, the differences between the SMSM + VPM and SMSM
+ EB models are small. Qualitatively, they seem negligible
under these conditions. Only at evaluation point E4, a more
significant difference between both models can be observed
in the case with non-zero stress (see Fig. 14), since the
magnetization values are far from saturation and in this regime,
the influences of mechanical stress are the highest.

However, the impact of considering hysteresis is more
pronounced when comparing the hysteresis models with the
purely anhysteretic SMSM, as seen in the first row of
Figs. 11-15. The inclusion of dissipation significantly alters
the local magnetization behavior, highlighting the importance

stress. (b) Zero mech. stress. (c) SMSM + VPM comparison. (d) SMSM +

EB comparison.

My in Alm
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Fig. 12. Evaluation point E2: Comparison of both vector hysteresis models
and the pure SMSM with and without mechanical stress. (a) With mech.
stress. (b) Zero mech. stress. (¢) SMSM + VPM comparison. (d) SMSM +
EB comparison.

of considering vector hysteresis in the macroscopic simulation,
at least from a local perspective.
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Furthermore, the influence of mechanical stress is evident
even though the differences in the local magnetization loci
seem negligible at evaluation points E; and E, in Figs. 11
and 12, respectively. The reason for this is the small stress
value and the already high saturation of the material, partly
caused by the permanent magnets, which introduce a constant
offset (bias). In these regions, mechanical stress has less
influence on the magnetization curve than in less saturated
regions. This is demonstrated by plotting the magnetization
loci at evaluation points E3 —— Es, which are located in the
rotor sheet closer to the shaft, right next to a stator coil an at
the outer stator sheet, respectively (see Figs. 13—15). In these
regions, the difference between simulations with and without
the inclusion of mechanical stress becomes more evident.

Notably, these regions also seem to cause a significant
change in the global level, which will be discussed next.

Until now, only local comparisons between the different
models with and without dissipation and with and without
stress have been discussed. To compare them on a more global
scale, the local element-wise hysteresis losses (energy loss per
cycle—one 360° rotation of the stator field), as previously
described, were evaluated, scaled by the element volume, and
summed over all elements of the stator and rotor regions.
The influence of mechanical stress on the local element-wise
hysteresis loss densities can also be seen in Figs. 16 and 17,
where the loss density is visibly higher in the region with large
compressive stress components (stator sheet press fit region),
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Fig. 14. Evaluation point E4: Comparison of both vector hysteresis models
and the pure SMSM with and without mechanical stress. (a) With mech.
stress. (b) Zero mech. stress. (¢) SMSM + VPM comparison. (d) SMSM +
EB comparison.

TABLE V
ENERGY L0SS PER CYCLE (ONE 360° ROTATION OF THE STATOR FIELD)

SMSM+VPM  SMSM+EB SMSM+VPM  SMSM+EB
no stress no stress with stress with stress
Q) ) Q) Q)
Energy loss  1.388 1.383 1.822 1.810

while being not as pronounced in regions with tensile stress,
for example, in the rotor sheet press fit region.

The results of the integrated hysteresis loss densities over
the rotor and stator sheet region are presented in Table V. The
relative difference between the SMSM + VPM and SMSM
+ EB models is 0.38% in the zero-stress case and 0.65%
in the non-zero-stress case. Although these differences appear
negligible for this particular use case, they reflect the same
trend observed in the local comparisons—specifically, the
SMSM + VPM shows slight deviations from the SMSM + EB
model in scenarios with increased anisotropy, leading to more
rapid changes of the magnetization vector. However, in this
case, the differences are insignificant.

Regarding the impact of mechanical stress, the SMSM +
VPM predicts an increase in energy loss of 31.25%, whereas
the SMSM + EB predicts a 30.90% increase when the stress
state from Fig. 10 is applied.

This behavior, although still of an academically simplified
nature, definitely justifies performing further, more realistic
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Fig. 16. Local hysteresis loss density evaluated with SMSM + EB.
(a) Without mechanical stress. (b) With mechanical stress.

simulations, for example, with a rotating rotor or an additional
stress state caused by the rotation of the rotor.

VII. CONCLUSION

In this work, the SMSM was successfully integrated into
the fully optimized EB vector hysteresis framework, provid-
ing a physics-based anhysteretic model capable of capturing
important material effects such as magnetostriction and the
magnetoelastic effect. Two efficient numerical schemes were
developed: one leveraging the Newton-Raphson method for
the constant-stress case and the BFGS algorithm for cases
with varying mechanical stress. These schemes enable the
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Fig. 17. Difference between local hysteresis loss density without stress minus
with stress. Positive values indicate higher losses with stress.

effective solution of the coupled SMSM + EB model, making
it practical for device-level simulations.

The applicability of the SMSM + EB model for device
simulations was demonstrated through its implementation in
an FE formulation for a simplified PMSM. Despite the VPM
being a simplification of the full EB model, results with
and without mechanical stress showed a close match to the
fully optimized EB model, but significant differences in their
computational performance became obvious. This suggests
that, for certain applications, the SMSM + VPM may be a
more practical choice without substantial loss of accuracy.

Further investigations are necessary to confirm the suffi-
ciency of the SMSM + VPM in more general cases. While
our current use case suggests that using the SMSM + VPM in
a macroscopic device-level FEM simulation provides compa-
rable results to the full SMSM + EB model, this conclusion
is based on specific assumptions such as an initially isotropic
material and no rotation of the rotor. These factors need to
be explored in future works to fully validate the use of the
SMSM -+ VPM over the full SMSM + EB material model in
a wider range of scenarios.

Future Work: Several promising extensions of this work are
identified as follows.

1) Incorporating Texture Information: The next logical step
is to integrate crystallographic texture data, for example,
from electron backscatter diffraction (EBSD) measure-
ments, using the simplified texture MSM [8]. This will
allow for even more accurate modeling of material
anisotropy at the grain level. A first step in this direction
would be to incorporate macroscopic anisotropy in the
SMSM by including the anisotropic energy in the global
energy minimization of the SMSM model.

2) More Realistic PMSM Simulations: Performing an
extensive set of FE simulations on a PMSM with
included rotation of the rotor would more accurately
reflect the real magnetic field distribution in an operating
machine, showing the practical relevance of including
mechanical stress in electromagnetic device simulations.

3) Machine-Level Experiments and Validations: Although
this article has demonstrated feasibility and consistency
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at the material and simplified machine cross section
level, a possible next step is to conduct full-scale
measurements on an actual rotating electric machine.
This will allow detailed comparisons of modeled vs.
measured quantities such as iron losses, local flux den-
sities, mechanical deformations, and induced voltages at
various loads.

4) Accounting for Additional Mechanical Stresses: Includ-
ing mechanical stresses due to the rotor’s rotation would
introduce more complex stress distributions and allow
for the evaluation of these effects on the magnetization
and hysteresis behavior, further improving the estimation
of the model’s applicability in real-world conditions.

APPENDIX A
INCREASING-DECREASING EXCITATION

Using the same material parameters as in Section V,
an increasing and then decreasing magnetic excitation is
prescribed, as displayed in Fig. 18, highlighting the region
of difference between SMSM + VPM and SMSM + EB,
which occurs specifically in regions when a pinning force
is overcome, displayed in Fig. 19. In these regions, the
permeability changes drastically, caused by fast changes of
the magnetization, where the approximation of the VPM
becomes obvious. A particularly illustrative behavior occurs
at M ~ [1.0-10° —0.3 - 10°] A/m (and also at M ~ [—0.75 -
10°,0.2 - 10°] A/m), where switching events can be observed.
The SMSM + EB optimization prevents the magnetization
from abruptly changing. The fact that the deviations are indeed
caused by these switching events is evident in Fig. 19, as the
trajectories begin to realign after the final switching event,
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Fig. 20.  Magnetization loci for oy = (100,0,0) MPa with 10x the

number of datapoints compared to Fig. 19. However, for plotting purposes
and comparability, the dataset was downsampled to the same timesteps as in
the original version.
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Magnetization loci for oy = (100, 0,0) MPa with 1000 pinning

which occurs at approximately M = [0.8 - 10°, —0.5 - 10°]
A/m, following a period of increased deviation.

APPENDIX B
INCREASING TEMPORAL RESOLUTION

As already mentioned in the main text body, increasing the
temporal resolution (smaller increments in the change of the
magnetic field strength input) cannot lessen the differences in
those regions, as displayed in Fig. 20.

APPENDIX C
INCREASING NUMBER OF PINNING FORCES

Increasing the number of pinning forces for a fixed time
step width decreases the differences slightly, as displayed in
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Fig. 21. However, even when increasing the number of pinning
forces up to 1000, the differences remain visible, and further
increasing the number does not decrease the difference.
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