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In many applications, accurately capturing the magneto-mechanical coupling and dissipative effects at the material level is essential
for realistic simulations. Embedding the simplified multiscale model (SMSM) inside an energy-based hysteresis framework yields high
fidelity but is computationally intensive for 3-D finite element (FE) analyses. This article introduces NNSMSM, a physics-informed
multi-task deep neural network that emulates the expensive SMSM operator. A hybrid Latin-hypercube (LH)/Sobol sampling strategy
efficiently explores the magneto-mechanical loading space. The network is trained with a composite loss that simultaneously fits
magnetization and magnetostrictive strain while enforcing reciprocity and positive definiteness of the susceptibility tensor. The traced
TorchScript model is linked to the open-source FE software openCFS, replacing the SMSM inside the vector play model (VPM)
hysteresis model with zero code changes. The benchmark of a permanent magnet synchronous machine (PMSM) device simulation
shows a speed-up of wall clock time by a factor of 11 while preserving global accuracy of hysteresis losses.

Index Terms— Deep learning, magneto-mechanics, mechanical stress, multiscale model, surrogate modeling, vector hysteresis, vector
play model (VPM).

I. INTRODUCTION

DEVICE-SCALE simulations of electrical machines and
power transformers demand material models that capture

both vector hysteresis and magneto-elastic coupling. A broad
range of coupled magneto-mechanical effects strongly influ-
ences a machine’s electromagnetic behavior [1], [2], [3].
Conventional material models found in commercial software
often fail to reflect these complexities, resulting in uncer-
tain predictions and potentially suboptimal designs. This
uncertainty is particularly critical when considering thermal
management, since imprecise loss predictions force the use
of large safety margins, reducing overall efficiency. If engi-
neers can reliably predict these losses, machines can be built
smaller without requiring additional cooling, leading to weight
reduction and improved performance.

In the preceding work [4], the simplified multiscale model
(SMSM) was embedded in an energy-based vector hysteresis
framework [5], [6], demonstrating that a physics-based anhys-
teretic description of the material significantly impacts the
prediction of local field distribution and global (hysteresis)
losses. However, that fidelity and physics awareness had
the downside of a high computational cost. Evaluating the
SMSM (and its inclusion in the hysteresis framework) inside
every Gauss point and time step increased the FE simulation
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time significantly, compared to classically used anhysteretic
functions, like Langevin or atan.

This work addresses this challenge and introduces
NNSMSM, a physics-informed multi-task deep neural net-
work [7] that emulates the expensive SMSM operator and
plugs seamlessly into the energy-based vector hysteresis
framework, in our case, the vector play model (VPM) [8].
The combined model (anhysteretic NNSMSM surrogate and
hysteretic VPM) is called NNSMSM+VPM in the follow-
ing. Previous investigations [4] discussed the inclusion of
the anhysteretic SMSM into the VPM hysteresis frame-
work and evaluated global hysteresis losses, highlighting
the substantial impact of mechanical stress states in PMSM
simulations. Compared with the (full fidelity) SMSM, the
surrogate (NNSMSM) accelerates material point evaluations
by several orders of magnitude while preserving thermody-
namic properties like symmetry and positive definiteness of
the magnetic susceptibility tensor and reciprocity, required
for robust convergence of a Newton scheme, used in FE
simulation. The idea of replacing computationally demand-
ing local continuum constitutive relations with machine
learning approaches follows earlier works in mechanics,
such as [9] and [10].

Currently, the NNSMSM is designed and trained for
the 2-D case, the extension to 3-D, however, is straight-
forward. To showcase its practical value, the combined
NNSMSM+VPM was implemented into the open source FE
software openCFS [11] and a permanent magnet synchronous
machine (PMSM) is simulated under a realistic press fit-
ting stress state. The NNSMSM+VPM reproduces the full
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SMSM+VPM reference to within 2% of global hysteresis
losses. This proof of concept highlights how physics-informed
constitutive surrogates can open the possibility to routine
device-level optimization.

A. Modeling Aspects and Main Contributions

Building on the earlier work that coupled the
SMSM [12], [13] with an energy-based vector hysteresis
model [4], in this contribution, the dissipative part remains
untouched, and the focus is exclusively on accelerating the
anhysteretic model. The full fidelity SMSM is replaced by
a physics-informed surrogate NNSMSM, while the VPM
provides the irreversible part, exactly as described in [4].

In summary, this article achieves several key advancements
as follows.

1) Physics-Informed Surrogate: A multi-task network that
predicts the magnetization M and magnetostrictive strain
tensor εµ as well as their field gradients. Point-wise
speed-up over the full fidelity SMSM of around 1000x
(at every Gauss point) and 11x at FE level is achieved.

2) Data-Efficient Sampling: An 8-D Latin-hypercube (LH)
design for material/stress parameters combined with a
low discrepancy Sobol grid in the H plane is used.

3) Automated Two-Stage Hyperparameter Search: Using
Optuna [14] for finding hyperparameters that balance
value and physics losses across data-rich and data-scarce
regimes.

4) Seamless FE Integration: A TorchScript export of the
surrogate is used in openCFS, the FE solver, where the
reciprocity and positive-definiteness are used to keep
Newton iterations from diverging.

5) Device-Level Validation: A press-fit PMSM bench-
mark shows ≤2% hysteresis loss error and 11 times
wall-clock reduction when using NNSMSM+VPM ver-
sus SMSM+VPM.

II. MODEL DESCRIPTION

The inclusion of the SMSM into the energy-based vector
hysteresis framework and especially into the VPM approxima-
tion was derived in detail in [4] and [15], respectively. In the
following, only the required notation for the embedding of
the newly developed NNSMSM surrogate into the VPM is
introduced.

Anhysteretic Operator: For any magnetic field
and mechanical stress state combination (H, σ ) the
SMSM [12], [13] returns the anhysteretic magnetization
and magnetostrictive strain

(M, εµ) = SMSM(H, σ , As, Ms, λs) (1)

with the constant material parameters As , controlling the initial
slope of the stress-free anhysteresis curve [16], λs the magne-
tostriction parameter, and Ms the saturation magnetization.

VPM incremental updates: The VPM has been previously
described in the literature (with [17] introducing the vector
stop model and [18] extending it to include the vector stop and
vector play hysteron), it is briefly described in the following.

Given the previous reversible magnetic field H rev,p the current
state follows from the explicit VPM update rule:

HVPM
rev = H − κ

H − H rev,p

∥H − H rev,p∥
. (2)

This update rule is derived using the following simplifying
assumptions.

1) Approximation 1: The direction of the magnetization
change (M − Mprev)/(|M − Mprev|) is identified as
the direction of the irreversible magnetic field strength
eirr = (H − H rev,p)/(|H − H rev,p|).

2) Approximation 2: Replace the current reversible mag-
netic field strength H rev by the previous reversible field
H rev,p to obtain HVPM

rev .
The connection to the SMSM (and its surrogate, the

NNSMSM) is introduced after each update step (2), when
the new magnetization vector, based on the reversible field
component (H rev = HVPM

rev ) is evaluated via the anhysteretic
relationship

M = M(H rev). (3)

This anhysteretic relationship is then represented via (1).

A. Composite Dissipative Model

A single pinning force κ yields unrealistically sharp kinks in
the hysteresis loops. In reality, magnetization changes occur on
a much finer scale, leading to smoother transitions observed in
actual hysteresis loops. A more realistic behavior is achieved
by introducing multiple pinning forces with varying magni-
tudes. The overall magnetization is then obtained through a
weighted superposition of these individual contributions

M =

N∑
i=1

ω(i) M(i) (4)

where N is the number of pinning forces, and ω(i) is
the respective weight of the i th force. These weights
typically follow a particular Rayleigh-like distribution,
as described in [19].

Sections III and IV describe how SMSM is replaced by the
physics-informed surrogate NNSMSM and how it is integrated
in a magnetostatic hysteretic FE formulation.

III. CREATING THE MULTI-TASK
DEEP-NEURAL-NETWORK SURROGATE (NNSMSM)

A. Data Generation and Standardization

The surrogate is trained on the 8-D input vector

x =
[
Hx , Hy, σxx , σyy, σxy, As, Ms, λs

]⊤ (5)

which contains the Cartesian components of the magnetic
field strength Hx and Hy , which are also used for evalu-
ating the partial Jacobian (differential susceptibility tensor)
χdiff = ∂ M/∂ H via automatic differentiation; three SMSM
material parameters As, Ms, λs ; and the plane stress tensor
components [σxx , σyy, σxy].
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TABLE I
LH RANGES

The network outputs five macroscopic quantities (magneti-
zation vector and magnetostriction strain tensor)

y =
[
Mx , My, εµ

xx , εµ
yy, εµ

xy

]⊤
. (6)

All features are standardized according to

x std
i =

xi − µi

σi
, ystd

i =
yi − µi

σi
(7)

with µi as the mean value and σi as the standard deviation of
quantity xi or yi computed on the training split only.

B. Sampling Strategy

Two datasets were generated in exactly the same way but
at two very different resolutions so that the influence of data
scarcity could be studied systematically.

Step 1: Choose Material and Stress Parameters: All six
“slow” variables [As, Ms, λs, σxx , σyy, σxy] are drawn from
the LH design summarized in Table I. A single LH draw is
called a material instance in the remainder of the article.

Step 2: Probe the Magnetic Loading Space: For every
material instance, the SMSM is evaluated on a 2-D Sobol
grid spanning the H plane. The reason for using Sobol sam-
pling and not just random draws is the (deliberately chosen)
low number of 10 H values between 0 and the maximum
H value of 500 kA/m. This approach spreads the samples
more uniformly (low discrepancy) throughout the interval and
guarantees that no important regions in the H plane are
missed. We generate Nφ equi-distributed directions and NH

magnitudes. To avoid a bias toward saturation, the magnitudes
are sampled in three concentric bands as follows.

1) 50% of samples in [0, 300] A/m.
2) 30% of samples in [300, 5000] A/m.
3) 20% of samples in [5000, 500 000] A/m.

The distribution of the points is based on the change of
magnetization with respect to magnetic field amplitude, which
is highest in the low field region, drops in the “knee” region
of the B H curve and reaches vacuum permeability (constant
value) in full saturation, which is the reason why only 20%
of samples are placed into the highest H band. The reason
for that is to counteract saturation biasing, which means if we
were to sample H uniformly, there would be more data points
in the saturation region and the important linear and knee
region of the typical B H curve would be underrepresented.
To prevent that, the three bands were introduced. The optimal
sampling, of course, requires knowledge of the output prior to
the model’s evaluation, which is the reason why the bands are
roughly tuned for electric steel sheet material. The directions
are rotated randomly for every material instance to suppress

Fig. 1. Architecture of the multi-task neural network.

artificial anisotropy. During the evaluation (testing) process,
special care was taken to spot signs of overfitting in certain
H value regions, which could have been introduced via the
banded H sampling approach but none were observed.

Terminology: Throughout the article the term sample
denotes one 8-D input vector x and its 5-D target y. The
terminology feature is used for an individual component of x,
and dataset or split for a collection of samples such as the
training set.

Large Versus Small Dataset: With (Nφ, NH ) = (120, 10)

and 63 material instances the procedure yields 75 600 samples
(input–output pairs). This collection is referred to as the large
dataset. Using (Nφ, NH ) = (72, 10) and just 28 material
instances produces a 2016 sample small dataset. Both sets
are sampled independently of each other and are partitioned
80%/10%/10% into training, validation, and test subsets.

The two-sized design allows us to quantify how much each
loss term in Section II-A behaves under data abundance (large
set) and under severe data scarcity (small set). All ablation
studies in Section III-H and FEM evaluations in Section IV,
therefore, report results for both resolutions.

C. Network Architecture

The NNSMSM surrogate is implemented as a fully
connected, multi-task feed-forward network. A schematic
depiction can be seen in Fig. 1. The single shared back-
bone fθ : R8

→ R256 receives the 8-D input vector and is
subsequently split into two task-specific branches (heads).
The backbone uses six identical layers, each consisting of a
linear projection with 256 neurons, followed by LayerNorm
and a GELU (Gaussian error linear unit) activation. Layer
normalization stabilizes the activations across the entire mini
batch, which proved more robust than batch normalization for
our batch size of 1024, while the GELU nonlinearity improves
the gradient flow in low field regimes [20].

From the shared backbone, the latent features are split
into two disjoint branches: the magnetization head f mag

θ and
the strain head f str

θ . The magnetization head contains three
hidden layers of 96 neurons each (Linear-LayerNorm-GELU)
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and outputs a 2-neuron linear layer that predicts (Mx , My).
The strain head is shallower (result of the hyperparameter
study described in Section III-H), containing just one layer
of 128 neurons followed by a 3-neuron linear projection.

This branched design offers two advantages over a single
large network. The first one is that the backbone learns a
common representation of the material state, while each head
can adapt individually. Furthermore, the separation prevents
gradient interference between the heterogeneous output scales,
which seemed to accelerate convergence compared with a
monolithic architecture. In early prototyping, a monolithic
variant was pursued which consistently underperformed the
later developed multi-task architecture. It showed slower con-
vergence, elevated RMSE, and it was finally replaced with
the multi-task architecture. Although the multi-task network
has more hyperparameters, the training, including Optuna
hyperparameter optimization, was significantly faster than for
the large monolithic network. These prototyping results are
not included, as a fair comparison would require a full hyper-
parameter retuning and ablation on the monolithic baseline,
which is out of scope. Since the branched model converged
robustly and outperformed the monolithic variant early on,
we focused our resources there.

Exact partial derivatives of the magnetization with respect
to the standardized field components, ∂ M/∂ H, are obtained
via PyTorch’s reverse mode automatic differentiation. The
gradients are subsequently rescaled by the feature standard
deviations to obtain the physical susceptibility tensor used in
the Sobolev, consistency, and positive definiteness penalties,
defined in the preceding section. Because all operations are
analytic and differentiable, the resulting partial Jacobian1 is
exact up to machine precision and introduces a negligible
overhead.

D. Composite Loss

The total loss L consists of four parts

L = Lval + wSobLSob + wconsLcons + wpdLpd (8)

where all losses are computed in standardized space (7)
unless stated otherwise. The weights wSob, wcons, and wpd were
obtained by the Optuna [14] hyperparameter search described
in Section III-H.

Value Loss: This is the classical loss term that tries
to minimize the difference between the output of the neural
network and the features, given as

Lval =
∥∥Mstd

pred − Mstd
ref

∥∥2
2 +

∥∥ε
µ,std
pred − ε

µ,std
ref

∥∥2
2 (9)

where (·)pred represents the predicted value and (·)ref is the
reference (ground truth) from the physical full fidelity SMSM
operator.

Sobolev Loss (Diagonal Differential Susceptibility): This
loss term acts as an additional loss term penalizing the
difference between the gradients of the model and the sampled
gradients. In other words, the network must fit the slope of the
M H plane in two orthogonal directions (in 2-D). This aims to

1Partial Jacobian, since only the partial derivative of the magnetization with
respect to the magnetic field strength is considered.

reduce overfitting and a smoother interpolation between sparse
field magnitudes

LSob =

∑
i∈{x,y}

∥∥χ
phys
diff,i i,pred − χ

phys
diff,i i,ref

∥∥2
2 (10)

with

χ
phys
diff,i j,pred =

∂ M std
i

∂ H std
j

σMi

σH j

(11)

where σMi and σHi are the standard deviations of the i th-
component of the magnetization and magnetic field strength,
respectively. The weight wSob is held at zero for the first
30 epochs [waiting for the first major drop in value loss (9)]
and linearly ramped over the next 20 epochs, allowing the
network to capture the coarse landscape before it is asked to
match derivatives.

Positive-Definite Susceptibility: Ensuring det χ ≥ 0 guar-
antees that the magnetic energy density remains convex,
which is a fundamental requirement of thermodynamics. The
additional loss term eliminates spurious “negative differen-
tial permeability” spikes observed in early experiments and
avoids convergence issues when using Newton solvers. For a
2 × 2 symmetric tensor positive definiteness is equivalent to
χxx ≥ 0 and det χ ≥ 0. Violations are penalized via

Lpd = ReLU
(
−χphys

xx

)
+ ReLU

(
− det χphys). (12)

Because the ReLU acts only on positive arguments, the term
is zero once both inequalities are satisfied.

Consistency: Thermodynamics also requires symmetric
susceptibility tensor entries χik = χ j i , leading to the following
loss term:

Lcons =
∥∥χ

phys
xy,pred − χ

phys
yx,pred

∥∥2
2 (13)

where χ
phys
ik is the derivative of the NNSMSM’s M⃗ i output

with respect to the input magnetic field vector H⃗ k (which
would be in standardized space) transformed back to physical
space because the derivatives in the standardized space do not
necessarily need to be symmetric due to possible slightly dif-
ferent scalers of the x- and y- component of the magnetization
and the magnetic field vector, respectively.

E. Optimizer and Scheduler

Training employs PyTorch’s [21] AdamW optimizer [22]
including weight decay (coefficient is the results of the two
staged hyperparameter optimization, described in the next
section, and results are summarized in Tables II and III).
A ReduceLROnPlateau scheduler halves the learning rate
after 50 epochs without improvement, down to a floor of 10−5.
To reduce the high-frequency parameter noise that AdamW
may introduce, we follow PyTorch’s AveragedModel strategy
and keep an exponential running average of the weights.

F. Hyperparameter Optimization

The hyperparameter optimization was carried out in a
two-step way using OPTUNA [14]. In the first step, the
parameters in Table II were optimized. Each of the 200 trials
was trained for 400 epochs on 1024-sample mini-batches.
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TABLE II
HYPERPARAMETER OPTIMIZATION STEP 1

TABLE III
HYPERPARAMETER OPTIMIZATION STEP 2

TABLE IV
ANHYSTERETIC PARAMETERS FOR MATERIAL 1 [23]

Once the network itself was optimized, the four scalar weights
for the loss term and the weight decay were tuned. Each of
the 50 trials of the second optimization step was trained for
400 epochs on 1024-sample mini-batches as well. The results
of the hyperparameter optimization are given in Table III.

G. Qualitative NNSMSM Validation on Two Materials

To verify that the neural surrogate generalizes to material
constants and excitations not seen during training, we repro-
duced the rotating field for two well-documented electrical
steels whose parameters are reported in the literature and
lie inside the LH domain of Table I. In this qualitative
comparison, only the output of the model trained on the small
dataset is tested. The comparison is established such that the
output of the SMSM (full fidelity physical model) is compared
to the output of the trained NNSMSM surrogate model for the
same excitation. Only the three anhysteretic SMSM param-
eters (Ms, λs, As) were changed, while the network weights
remained frozen, and no additional fine-tuning was performed.
In each test, the magnetic field H is rotated twice through 360◦

while its magnitude is ramped from 0 to 5kA/m. Three loading
scenarios are studied as follows.

1) No Mechanical Stress: σ =0 MPa.
2) Moderate Tension: [σxx , σyy, σxy] = [80, 0, 0] MPa.
3) 50% Out-of-Distribution (OOD) Tension: [σxx , σyy,

σxy] = [180, 0, 0] MPa.
As well as two materials (both Fe-3%Si, non-oriented, and
cold rolled) as follows.

Material 1: Parameters are taken from [23] and sum-
marized in Table IV. Figs. 2 and 3 show the surrogate and
reference curves for the stress-free and the 80 MPa tensile
cases, respectively. In Fig. 4, the results for the 50% OOD
stress values are presented.

Fig. 2. Material 1, stress-free condition (σxx =σyy =σxy =0 MPa).

Fig. 3. Material 1 under tensile load (σxx = 80 MPa).

Material 2: Parameters are derived from [24] and the
low-field susceptibility χ0 according to [16], see Table V. The
same three stress states are examined again, see Figs. 5–7.
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Fig. 4. Material 1 under 50% OOD tensile load (σxx = 180 MPa).

TABLE V
ANHYSTERETIC PARAMETERS FOR MATERIAL 2 [24]

The 80 MPa stress value was selected to include real-
istic assembly stress magnitudes reported for shrink-fit
stators. Measurements and FE analyses on actual stator
frame assemblies indicate circumferential compressive stresses
from 10 to 20 MPa for modest material overlap [25], [26] up
to 60 MPa in tighter fits or specific lab setups [27], while
interface contact pressures in generic press-fit assemblies can
exceed 80–130 MPa.

One can clearly see the distortion of the non-saturated
magnetization regions due to the stress-induced anisotropy.
The NNSMSM curves closely superimpose on the SMSM
reference. Minor deviations become visible only when zoom-
ing into the “knee region” of the BH curve, where the
magnetization varies most rapidly. These comparisons show
(qualitatively) that even the surrogate trained on the small 2k
dataset retains excellent predictive power even for entirely new
parameter sets. Furthermore, the generalization and extrap-
olation properties are surprisingly good, as demonstrated
by evaluating the NNSMSM on a 50% OOD stress value,
see Figs. 4 and 7. Regarding the performance, the eval-
uations for the qualitative comparisons, performed in this
section, consist of 1257 evaluations of the full fidelity SMSM

Fig. 5. Material 2, stress-free condition.

Fig. 6. Material 2 under tensile load (σxx = 80 MPa).

(25.6 s) and the NNSMSM surrogate (0.014 s), resulting in a
speed-up by a factor of 1829. The excellent agreement for two
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Fig. 7. Material 2 under 50% OOD tensile load (σxx = 180 MPa).

dissimilar steels, combined with the large runtime gain, con-
firms that NNSMSM is a reliable drop-in replacement for
the analytic SMSM in engineering-scale finite element (FE)
simulations, as further demonstrated in Section V.

H. Ablation Study

To evaluate the impact of every physics-informed regulariser
in (8), six additional surrogates were trained that share identi-
cal architecture, optimizer, batch size, and scheduler, but with
selected loss weights set to zero (see Table VI). Each network
was evaluated on:

1) the 10% held-out test split (in-distribution) and
2) an OOD set created by enlarging all numerical feature

ranges by 50%.
The loss weights (wpd, wSob, and wcons) were kept identical

to those obtained in the ALL_ON hyperparameter optimization
(see Section III-F). This choice avoids interference of the
comparison by differing optimization settings and isolates the
effect of removing each physics-informed term. While it is
possible that re-optimizing weights for each reduced configu-
ration might yield slightly lower absolute errors, the qualitative
impact of each constraint, e.g., increased asymmetry, is robust
and does not depend on retuning.

In the following, the results of the ablation study are given
for both the models trained on the large sampling set (75k sam-
ples) as well as on the smaller set (2k samples), described in
Section III-B, by using the set of metrics described in the
following.

TABLE VI
LOSS-WEIGHT CONFIGURATION OF THE ABLATION VARIANTS

Evaluation metrics: Let D = {(xn, yn)}
N
n=1 denote the

standardized evaluation set. For every sample the network
returns ŷn and the differential susceptibility χ̂n = [

χ̂ xx χ̂ xy

χ̂ yx χ̂ yy
]n .

Three scalar metrics are employed as follows.
1) Standardized Value RMSE:

RMSEstd =

√√√√ 1
5N

N∑
n=1

∥∥ ŷn − yn

∥∥2
2 (14)

averaged over the five output channels.
2) Sobolev RMSE: Relative error of the diagonal differen-

tial susceptibility

RMSESob =

[
1

2N

N∑
n=1

(
χ̂diff,xx,n − χdiff,xx,n

)2

χ2
diff,xx,n + χ2

diff,yy,n + 10−12

+

(
χ̂diff,yy,n − χdiff,yy,n

)2

χ2
diff,xx,n + χ2

diff,yy,n + 10−12

]1/2

(15)

where the factor 10−12 is added in the denominator to
prevent spurious blow-ups of the error due to near-zero
susceptibilities, which might occur in full saturation.
Due to the average value of the denominator of 107,
the influence of this factor is negligible.

3) Consistency Error (Off-Diagonal Antisymmetry):

Cons =
1
N

N∑
n=1

∣∣χ̂diff,xy,n − χ̂diff,yx,n
∣∣. (16)

This quantifies the reciprocal-relations constraint
χdiff,xy = χdiff,yx , zero means perfect symmetry.

4) Positive-Definiteness Violation Rate in %:

PD = 100
1
N

N∑
n=1

1
[
det χ̂diff,n < 0 or χ̂diff,xx,n < 0

]
(17)

where 1[·] is the indicator function.
Tables VII and VIII lists all metrics for the in-distribution

and OOD evaluations of the large sample set as well as
Tables IX and X for the small set. Fig. 8 visualizes the spatial
error for the eight ablation study variants of the large sample
set for H⃗ magnitudes in [−100, 100] kA/m. The faint, periodic
“spokes” in those heatmaps are the imprint of the angular
sampling used to build the training set with N8 equally spaced
directions. Even with random rotations per material instance,
the distribution over ϕ remains discrete, so the network seems
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TABLE VII
ABLATION STUDY FOR NNSMSM’S TRAINED ON LARGE SAMPLE SET

(75K SAMPLES): IN-DISTRIBUTION METRICS (10% HOLD-OUT SET)

TABLE VIII
ABLATION STUDY FOR NNSMSM’S TRAINED ON LARGE SAMPLE SET

(75K SAMPLES): OOD METRICS (50% ENLARGED SAMPLE RANGE)

TABLE IX
ABLATION STUDY FOR NNSMSM’S TRAINED ON SMALL SAMPLE SET

(2K SAMPLES): IN-DISTRIBUTION METRICS (10% HOLD-OUT SET)

TABLE X
ABLATION STUDY FOR NNSMSM’S TRAINED ON SMALL SAMPLE SET

(2K SAMPLES): OOD METRICS (50% ENLARGED SAMPLE RANGE)

to learn a weak angular prior that shows up as small, high-
frequency radial artifacts. A secondary contribution may come
from the SMSM reference itself, which evaluates the free
energy on a fixed spherical tessellation. In contrast, the broader
lobes at low to mid magnetic field strengths arise due to
a directional mismatch in the learned Jacobian. This can
be quantified by evaluating a directional susceptibility error

Fig. 8. Error heat-maps in the (Hx , Hy) plane for the eight model variants.

measure

Eχ (||H⃗ ||2, ϕ) :=
∣∣(χ̂(||H⃗ ||2, ϕ) − χ(||H⃗ ||2, ϕ)

)
· e⃗ϕ

∣∣ (18)

where χ̂ and χ are the predicted and reference magnetic
susceptibility tensors evaluated at a constant magnitude of
the magnetic field strength ||H⃗ ||2 = const. and direction
ϕ ∈ [0, 2π ], displayed in Fig. 9. Across ablation variants, the
angular profiles mirror the heatmap features, confirming that
the low- to mid-field lobes originate from small but systematic
directional Jacobian errors, even though their absolute values
remain small. Finally, it should be noted that the apparent
smoothness of the ALL_ZERO variant in Fig. 9 compared with
partial ablations must be interpreted with care. Since all abla-
tions were trained with the same hyperparameters optimized
for the ALL_ON case, those settings are not guaranteed to
be well balanced once a constraint is removed. This explains
why ALL_ZERO can look deceptively better, despite lacking
the physics constraints that are essential for robustness under
scarcity and extrapolation.

Tables VII–X reveal that with abundant data, the value loss
already defines the landscape and auxiliary physics terms serve
mainly as subtle regularisers.
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Fig. 9. Directional susceptibility error Eχ (∥H⃗∥2, ϕ), exemplatory for
||H⃗ ||2 = 10 kA/m, providing an explanation for the low- to mid-field lobes
in Fig. 8.

In the small sample set, the observations are different.
NO_PD inflates RMSEstd by 70%, NO_CONS multiplies the
symmetry error by five, and NO_SOB drastically increases
the PD-violation rate. This means that under data scarcity,
the constraints replace the missing prior knowledge, and each
loss term is responsible for keeping a different failure mode
bounded (PD spikes, antisymmetry, and noisy susceptibility).

Concluding, it can be said that all three physics-informed
terms are necessary when the training set is small or when sig-
nificant extrapolation is expected. For large datasets, the lighter
NO_SOB variant offers a good compromise between hyperpa-
rameter tuning complexity and local accuracy, see Table VII.

IV. INCLUDING NNSMSM+VPM IN AN
FE FORMULATION

Including the trained NNSMSM models in the VPM vector
hysteresis model, described in Section II, enables us to use the
fast neural network surrogate model as the anhysteresis curve
generator in a vector hysteresis model, which can be used in
macroscropic FE simulations, depicted in Fig. 10.

In the following, the magnetic FE formulation of Fig. 10
will be introduced very briefly based on the previous
works [28], [29], [30] with a special focus on discussing
convergence-critical properties of the material model.

A. Hysteretic Magneto-Static 8 Formulation

For the FE simulation, the magnetic scalar potential formu-
lation is used. In the nonlinear and hysteretic case, the starting
point is to minimize the magnetic co-energy wc with respect to
the magnetic scalar potential 8 over the whole computational
domain �

arg min
8∈H 1(�)

F8 = arg min
8∈H 1(�)

∫
�

wc(H s − 8) dV . (19)

The source magnetic field strength H s fulfills Ampere’s law

∇×H s = J s (20)

Fig. 10. Magneto-mechanical NNSMSM vector hysteresis material model
in a magneto-mechanical FE simulation.

and can be computed by several methods [31]. In this work,
it is solved by the 2-D penalized magnetostatic H for-
mulation [32]: For a given source current density J s and
appropriate values for the penalty parameter ρ find H s ∈

H(curl, �) such that∫
�

µH s · H ′

s + ρ∇×H s · ∇×H ′

s dV =

∫
�

ρ J s · ∇×H ′

s dV

∀H ′
∈ H(curl, �). (21)

The nonlinear partial differential equation equivalent to the
minimization problem (19) is obtained by taking the variation
with respect to the magnetic scalar potential 8 yielding the
stationary points: for a given source magnetic field strength
H s find 8 ∈ V := {8 ∈ H 1

| 8 = 8e on 0e} such that

δF8[8, 8′
] =

∫
�

∂wc(H s − ∇8)

∂ H
· ∇8′ dV

=

∫
�

B(H s − ∇8) · ∇8′ dV = 0

∀8′
∈ V ′

:= {8′
∈ H 1

| 8′
= 0 on 0e}. (22)

The weak form (22) is then solved using the FE method in
combination with the iterative Newton–Raphson (NR) method.
This yields the following problem to solve in each NR
iteration n:

J nδφ = δFn
8 (23)

8n+1
= 8n

+ ηδ8 (24)

with η being an appropriate value for the line search parameter.
In the case of a nodal discretization in terms of FE shape
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functions N , the Jacobian matrix J is computed via

J n
i j =

∫
�

∂ B
∂ H

n

· ∇Ni · ∇N j dV (25)

where the differential magnetic permeability

µdiff = I + χdiff = ∂ B/∂ Hn (26)

with I as the unit tensor, is obtained by quasi-Newton meth-
ods, e.g., the Broyden or the Broyden–Fletcher–Goldfarb–
Shanno method [33]. The NNSMSM enters the formulation
at exactly this location via the constitutive law

B = B(H, σ ) = µ0(H + M(H, σ ))

= µ0(H + NNSMSM(H, σ )). (27)

Since the mechanical stress state is constant during the solution
of the magnetic problem, it does not introduce any additional
complexity and can be considered as a constant parameter,
only used in the evaluation of the NNSMSM. The right-hand
side of (23) is

δFn
8,i =

∫
�

Bn
· ∇Ni dV . (28)

To guarantee the convergence of the NR method, the Jacobian
matrix has to be positive definite and symmetric in every
iteration. This can be ensured by the following conditions:

∂ B
∂ H

n

=
∂ B
∂ H

n,⊤

, µ1|ξ |
2

≤ ξ⊤
∂ B
∂ H

n

ξ ≤ µ2|ξ |
2

∀ξ ∈ R2

(29)

and µ1, µ2 > 0. It is realized by applying an eigenvalue
decomposition to ∂ B/∂ Hn for every quadrature point and
check if they are in the interval [µ1 µ2]. This represents
an additional safety measure for guaranteed convergence,
on top of the PD and reciprocity constraint in the training
of the NNSMSM (17), which is enforcing exactly the same
requirement. The line search parameter η is determined by
minimizing (19) along the NR direction δ8 resulting in

∂Fn+1

∂η
=

(
∂Fn+1

∂8n+1

)
∂8n+1

∂η

= δF(8n
+ ηδ8)⊤δ8

!
= 0. (30)

This represents a 1-D root-finding problem, which can be
solved, e.g., by Brent’s method [34].

V. APPLICATION EXAMPLE: SIMULATION OF A PMSM

To evaluate the performance and accuracy of the different
NNSMSM models (as described in Section III-H), all models
were embedded in a macroscopic FE formulation described
in the previous section. These simulations were carried out in
the open-source FE software openCFS [11]. The simulated
device is based on the cross section of a six-pole, 36-slot
PMSM, using a 2-D triangular mesh, as shown in Fig. 11.
Inside the permanent magnet region, a remanent flux density
of Br = 0.6 T is prescribed. The stator and rotor are composed
of non-oriented Fe-3%Si electrical steel, with the anhysteretic
parameters for the SMSM provided in Table V. The air region

Fig. 11. Geometry of the simplified PMSM with V1,2,3 as the three stator
windings.

TABLE XI
κ AND ω VALUES

and the stranded coils are treated as linear with µ0 and zero
conductivity so that eddy currents are absent.

Regarding the hysteretic parameters (set of κ pinning
parameters), only four pinning forces and weights were
used due to a faster numerical simulation (of the FEM
reference solution with SMSM+VPM), given in Table XI,
which are uniformly distributed, depicting a purely isotropic
dissipative behavior. In this case, the weights were cho-
sen equally distributed and the κ parameters were obtained
by fitting to uniaxial hysteresis loop measurements of a
non-oriented electric steel. These dissipative parameters were
used for both subsequent SMSM+VPM as well as the var-
ious NNSMSM+VPM simulations. A three-phase excitation
is applied by prescribing the current density in the stator
windings with a frequency of f = 50 Hz. The current densities
in the three phases are defined as

J i(t) = Ji sin(2π f t + φi )

where φi ∈ {0◦, 120◦, 240◦
} and Ji = 3.468025 · 106 A/m2.

The simulation proceeds with a pseudo time step of 1t =

0.001 s, and it is run for 421 time steps (two full rotations of
the rotor). Note that since eddy currents and rate-dependent
effects are excluded, the excitation frequency does not influ-
ence the results.

The goal of this numerical experiment is to quantify the
impact of choosing between the various NNSMSM versions as
the anhysteretic function of the NNSMSM+VPM model at the
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Fig. 12. Mechanical stress (in Pa) after prescribing a purely radial displace-
ment at the rotor’s inner and stator’s outer edge. (a) von Mises stress. (b) σrr .
(c) σφφ . (d) σrφ .

device level, extending the local material-scale comparisons
presented in Section III-H. The comparison comprises the
global hysteresis losses by calculating the area of the Bx -Hx

and By-Hy loops (as described in [35]) over one cycle (one
360◦ rotation of the stator field), once steady-state is reached
as well as the convergence metrics of the quasi Newton
scheme (average iteration numbers and maximum number of
iterations). The energy loss is computed element-wise and then
summed over all stator and rotor elements.

For the stress state, a mechanical simulation was conducted
to model a press fit of the rotor and stator sheet onto a
rod or casing by prescribing a radial displacement at the
rotor’s inner and stator’s outer edge, resulting in the stress
distribution shown in Fig. 12, with a maximum von Mises
stress of 67 MPa.

To ensure a fair comparison of computational performance
between the SMSM+VPM (physical full fidelity material
model) and the NNSMSM+VPM versions used within the
FEM simulation, all nonlinear simulations were iterated until
the L2 norm of the residual reached 1 · 10−8.

A. Reference Result

A two-revolution, steady state FE simulation with the full
fidelity multiscale SMSM+VPM model and shrink fit stress
results in the losses given in Table XII.

B. NNSMSM+VPM Surrogate FEM Results

The FE benchmarks confirm a clear distinction between
the different surrogate variants and between rich and sparse
training regimes. When the networks are trained on the large
75k sample set, all eight configurations reproduce the reference

TABLE XII
HYSTERESIS LOSSES FROM REFERENCE SIMULATION WITH

FULL FIDELITY MATERIAL MODEL SMSM+VPM

TABLE XIII
ABSOLUTE HYSTERESIS LOSSES PER MECHANICAL REVOLUTION AND

NEWTON ITERATIONS FOR NNSMSM’S TRAINED ON

LARGE FEATURE SET (75K SAMPLES)

TABLE XIV
RELATIVE ERROR WITH RESPECT TO THE REFERENCE FOR NNSMSM’S

TRAINED ON LARGE FEATURE SET (75K SAMPLES)

hysteresis losses to <2% accuracy, see Tables XIII and XIV.
The spread in total loss error stays below two percent, and
the average Newton iteration count rises by no more than one
iteration compared to the reference SMSM+VPM simulation.
Once the data for training the models is reduced to 2k samples,
the picture changes abruptly, see Tables XV and XVI. The
unconstrained networks introduce errors in global hysteresis
losses of up to 423% in the rotor and up to 29% in total
losses (stator and rotor), a bias large enough to make the
non-physically constrained networks unfeasible for FEM loss
calculations. Only the ALL_ON version is able to keep the
RMSE relatively low, resulting in a <2% total deviation of
hysteresis losses compared to the reference result.

Regarding the speedup, all NNSMSM+VPM FEM simu-
lations provide a reduction of simulation wall clock time of
roughly a factor of 11, see Table XVII (all simulations were
carried out on an Apple Mac M3 Pro). The training time for
the NNSMSM amounted to around 6 h for the large feature
set and around 20 min for the small feature set.

Note: Relative errors are expressed as (PNN − Pref)/

Pref × 100%; negative values indicate an under-prediction by
the surrogate.
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TABLE XV
ABSOLUTE HYSTERESIS LOSSES PER MECHANICAL REVOLUTION AND

NEWTON ITERATIONS FOR NNSMSM’S TRAINED ON

SMALL FEATURE SET (2K SAMPLES)

TABLE XVI
RELATIVE ERROR WITH RESPECT TO THE REFERENCE FOR NNSMSM’S

TRAINED ON SMALL FEATURE SET (2K SAMPLES)

TABLE XVII
WALL CLOCK TIMES FOR THE DIFFERENT MODELS AND 421 TIME

STEPS (TWO FULL ROTATIONS OF THE ROTOR)

VI. CONCLUSION

The various simulations and comparisons in the work show
that physics-guided regularization is indispensable whenever
data is scarce and merely advantageous when training data is
increased. With 75k samples, the shared backbone already sees
enough patterns to capture the coarse anhysteretic landscape.
Introducing individual penalties decreases the (local as well as
global) error only slightly. After the training set is decreased to
2k points, the value loss can no longer dominate the stochastic
gradient, and networks that lack either the positive definiteness
hinge, the reciprocity filter, or the Sobolev slope control begin
to overfit isolated directions. This seems to influence the hys-
teresis losses in the rotor more severely than in the stator, most
likely due to the already strong bias field from the permanent
magnets, shifting the operation point into the knee region of
the anhysteresis curve and therefore, making it more difficult
to capture the fast magnetization changes. The NNSMSM
version, including all physics-informed, by contrast, keeps
both local and global deviations within single-digit percentages

and maintains its runtime advantage, a cost-benefit balance
that makes it a great fit for transient magneto-mechanical
simulation of electrical machines.

For routine design loops, the NO_SOB variant offers a good
trade-off between training cost and robustness, provided the
dataset is large. If only one physics-informed loss term is
kept, the parameter space of the hyperparameter search is
also decreased, making the model easier to train. For high
fidelity transient studies, optimization tasks with repeated
extrapolation, or any workflow that must remain stable under
various stress states and strong permanent magnet bias, the
composite ALL_ON surrogate is the only reliable choice.

Future work will explore replacing the simplified SMSM
by the full multiscale model [16]. The data generation is
conceptually straightforward and would allow one to include
more information about the material behavior, like anisotropy
and texture effects, at the cost of longer offline sampling
time. A natural next step is to surrogate the entire vector
hysteresis operator. That goal is significantly harder than just
replacing the anhysteretic model, because hysteresis is path-
dependent. The magnetic response (magnetization) at the next
step depends not only on the current field but also on an
internal state that stores, for example, the previous reversible
field or magnetization. Capturing such vector memory would
require either augmenting the surrogate with explicit state
variables that are carried through the FE quasi-time steps,
or using a recurrent architecture, e.g., a gated RNN or LSTM,
which learns the hidden state while respecting thermody-
namic constraints. Preliminary tests with vanilla RNN/LSTM
models trained only on input–output relations delivered little
net speed-up because, in a hysteretic FE simulation, the
network sees just the current H and previous state and
outputs the new M. That step-by-step inference erodes the
potential performance gain compared to a whole time-series
of input values for the RNN/LSTM. Developing a recurrent
surrogate that is both memory-efficient and computationally
fast for the energy-based vector hysteresis operator in FE
simulations remains a significant challenge. Recent advances
in neural operator approaches for representing magnetic
hysteresis [36], [37] suggest a promising direction. Finally,
moving to 3-D simulations mainly requires extending the input
and output vectors/tensors and adapting the loss terms accord-
ingly, making 3-D surrogate training an attractive next step.
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