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A B S T R A C T

In this work, the mechanical response at finite strains of embedded dome shells is investigated both numerically
and experimentally. These systems are interesting as they exhibit up to two stable shapes, a feature that makes
them promising candidates for numerous applications from energy harvesting to shape morphing. The energy
landscape scenario of these structures presents a major peculiarity as the strain energy required to switch
the system between its stable shapes is path-dependent and varies upon loading (i.e. snap-through instability)
and unloading (i.e. snap-back instability). This paper proposes to investigate their asymmetrical mechanical
behavior. To do so, Finite Element computations were first carried out onto dome shell models, where the
geometrical parameters were varied systematically. Specifically, two sets of computations were conducted using
the Static Damping Method. The first served to identify the mono- and bistable domains of the embedded
dome shells as function of the dome main geometrical parameters. The second focused on bistable dome
geometries and explored systematically the asymmetry in the energy barrier required to switch between the two
equilibrium states. Interestingly, the results of this study showed that a simple asymmetry indicator could be
used to effectively qualify the dome asymmetric bistability, in turn providing simple guidelines for the design
of morphing structures with programmable response. Finally, in order to validate the numerical results, the
mechanical response of the 3D-printed rubber-like dome shells was measured experimentally using a dedicated
set-up that was designed and fabricated to this purpose. The results of experiments were found to be in good
agreement with those of simulations.
1. Introduction

Mechanical instabilities have been avoided for long time by me-
chanical engineers and designers, as they have often been considered
the precursor of the structure catastrophic failure. However, in the
last decade many studies have demonstrated that instabilities can be
harnessed to attain new properties and functionalities [1–3]. These
include notably a superior damping [4] and load-bearing capacity [5]
in composites that contain negative stiffness elements [6], as well as
non-conventional pattern transformations in rubber-like porous struc-
tures with a periodic design [7,8]. Likewise, structures can also take
advantage of mechanical instabilities to achieve programmable shape
morphing capabilities [9,10]. In very recent years, the rapid progress in
3D-printing technology has enabled the design of materials and struc-
tures that encode a variety of shape change functionalities. Mechanical
metamaterials – as these materials are also called – have a tailored
architecture optimized across different length scales, and can showcase
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morphing capabilities that are reminiscent of those displayed by living
organisms (e.g. plants and animals). To date, mechanical metamaterials
with programmable shape-changing capabilities have been designed
and used to control, e.g., the propagation of elastic waves in flexible
structures [11–13] , or to enable tunable actuation in soft robots and
bio-inspired systems [14–16].

Another important feature resulting from structural instabilities
is multi-stability [17]. The latter is characterized by the presence
of more than one minimum in the energy landscape and allows a
structure to have multiple stable configurations. Multistable systems
prove therefore highly suitable for application in smart systems and
can be designed to exhibit tunable properties (e.g. energy dissipa-
tion and thermal expansion [18–20]) and programmable shapes in
response to an external stimulus [21,22]. Most synthetic morphing
systems realized to date are bistable mechanisms, whereby typical
designs employ either bending laminates [23–26] or axially-prestressed
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beams [19,20,27–30] to achieve snapping between two distinct stable
shapes. Multistability in these systems is of geometrical origin and
arises from the structure’s hierarchical architecture, whereby elastic
instability (e.g. bucking in beams) at the meso-scale enables obtain-
ing different programmable shapes at the macro-scale. Notable, yet
very recent, examples of multistable structures include shape memory
polymer shells [25], elastomeric beams comprising multiple self-similar
modules [8] as well as thermoplastic dome-patterned structures [31–
33]. By virtue of their tunable response, these examples encourage the
pursuit of novel multistable structures that derive functionality from
mechanical instability.

Doubly curved shells, namely domes, provide an attractive gateway
owards the design of multistable morphing systems. Their simple
eometry exhibits a bistable behavior and can be patterned into a
ariety of structures, from 1D to 3D [31–33]. Moreover, dome arrays
an be fabricated at any structural scale, including the micrometric [34]
nd the nanometric scale [35]. To date, bistable domes have been
sed in many applications. For example, dome-patterned structures
ave been employed to obtain tunable optical properties [34], adaptive
tiffness [32] and tunable energy dissipation [36] as well as shape
rogrammability and robotic actuation [31,37]. Dome shells are struc-
ures that exhibit multi-stable behavior and they can display up to two
table states. They have been studied for decades, while one of the
irst investigation of the buckling and post-buckling behavior of thin
pherical caps has been conducted by Brodland and Cohen [38], using
umerical and experimental analysis. These authors investigated the
hysical origin of bistability of dome shells focusing on their geometry,
nd used a geometric dimensionless parameter to analyze and compare
he behavior of different shells. Notably, bistability of dome shells
esults from an equilibrium between stretching and bending energies
uring shell deformation. Stating that the elastic response of a shell can
e decomposed into membrane and bending effects, Kaplan et al. [39]
ntroduced a geometric dimensionless parameter 𝜆 as the ratio of
embrane energy (governed by stretching) over bending energy. This

atio is defined as the fourth root of its original definition [38], i.e.:

= 4

√

𝑈𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔
= 4
√

12(1 − 𝜈2)
√

𝑅
ℎ
𝛼 (1)

With 𝜈 the constitutive material Poisson’s ratio, 𝑅 the dome radius,
the shell thickness and 𝛼 the dome half-angle. From 𝜆 definition

n Eq. (1), one can infer that bistability of a dome relies mostly on
eometric parameters 𝑅, ℎ and 𝛼, but also on the constitutive material
arameter 𝜈. Specifically, the influence of the Poisson’s ratio and shell

thickness on spherical dome stability was exhaustively demonstrated by
Madhukar [40]. Because of its simple definition and physical deriva-
tion, the dome parameter 𝜆 has been largely used as an effective
criterion to discriminate bistable from monostable configurations. The
recent study by Taffetani et al. [41] provides a quantitative analy-
sis onto the geometric parameter threshold between monostable and
bistable domains. The bistability of a dome shell also depends on
several other parameters that are not accounted for by Eq. (1). These
are both geometry- and material-dependent. Notably, Sobota et al. [42]
have shown that the bistability of a dome shell depends on the bound-
ary conditions applied at the edge of the shell, while Wan et al. [43]
have investigated the influence of geometric defects. Equally important,
time-dependent bistability, often called pseudo-bistability [33], can be
encountered for visco-elastic shells [44] as the relaxation changes the
stretching to bending energy ratio.

The bistable response of dome shells also changes when these struc-
tures are integrated, i.e. embedded into larger objects or systems. This
as been shown, e.g., by Liu et al. who studied the mechanical behavior
f a single embedded dome unit, called a snappit [45]. Notably, they
emonstrated that the stability domains not only rely on dome shell
eometric parameters and constitutive material as stated by Eq. (1),
ut also on the distance to the boundary conditions. Embedded bistable
2

domes are of great practical interest as they can be used, e.g., to
design bistable valve for soft robotics [46], valve with passive flow
control [47], bioinspired reconfigurable soft robot [48], programmable
grippers [49,50] or even soft pneumatic digital logic gates [51]. How-
ever, the knowledge of the required energy to switch between stability
states, often referred to as the energy barrier, is instrumental to design
such systems. To provide a quantitative measure of how difficult it is
to transition from one stability state to another, Mukherjee et al. [52]
qualified such required energy as the strength of stability. However, the
quantification of the stability strength is often not straightforward as
the energy landscape of a system, including embedded domes, depends
on numerous factors. Likewise, the energy needed to transition between
two different stability states can be either symmetric, when the depth
of the energy wells are equal, or asymmetric in the opposite case.
This is schematically illustrated in Fig. 1. The quantification of the
energy barrier and notably of its possible asymmetric nature, is in turn
of crucial importance to choose the proper actuation mechanism to
switch between two stable states. Yet, while prior work has widely ex-
plored effective actuation strategies for dome-based structures (e.g. via
embedded magnetic particles [53,54] or by chemical routes [55]),
only a few studies have investigated the asymmetric nature of the
energy landscape of dome shells [40]. At present, and to the best of
our knowledge, a systematic investigation of the asymmetric bistable
response of embedded domes has not yet been conducted. This is what
we propose here to do.

The present paper investigates both numerically and experimentally
the energy landscape of embedded dome shells whose geometrical
parameters are varied systematically. Notably, its main focus is to
quantify by mean of a simple index the asymmetry of the strain energy
strength (i.e. threshold) to switch from the two equilibrium states.
The latter in turn can provide simple guidelines for the design of
novel bistable dome shells with tunable shape switch. Specifically, the
paper is organized as follows. In Section 2 the methods used for both
experiments and simulations are first presented and the constitutive law
for the material used for manufacturing the test samples is provided.
The results of both experiments and simulations are then presented
in Section 3. Notably, two sets of numerical results are reported. The
first focuses on the parametric study of the mono- and bistability do-
mains (Section 2.4.1) and is complemented with selected experimental
results of the dome mechanical behavior; the second investigates the
asymmetry of the transition between the two equilibrium states for a
variety of bistable dome geometries (Section 3.3). Conclusion are given
in Section 4.

2. Materials and methods

This section provides a description of the materials and methods
used throughout the study. Specifically, it starts with the definition of
the geometric parameters used to design the embedded dome shells
(Section 2.1) and the description of the material model (Section 2.2).
The numerical framework used to ensure numerical convergence is de-
tailed in Section 2.3, while the Boundary Conditions (BCs) used for FE
analysis are described in Section 2.4 as well as the detailed organization
of the numerical computations. Experimental samples manufacturing is
presented in Section 2.5.1, and a description of the experimental set-up
and protocols is given in Section 2.5.2.

2.1. Dome shell model definition

The dome shell structure studied in this work consists of a thin dome
encircled by a circular plate, as sketched in Fig. 2(a). A detailed illustra-
tion of the dome shell geometric parameters is presented in Fig. 2(b).
Three parameters are notably used to define the dome geometry: the
inner radius 𝑅, the shell thickness ℎ (uniform throughout the structure)
and the half-angle 𝛼. In particular, the deepness of a dome shell depends
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Fig. 1. Energy landscapes associated with monostable, symmetric bistable and asymmetric bistable systems. Bistable systems can present symmetric (with two equally deep energy
wells) or asymmetric (with two unequally deep energy wells) landscape depending on their configuration. The present work investigates the reasons behind the asymmetric behavior
of embedded dome shells and explores the tunability of the landscape asymmetry.
Fig. 2. Dome shell model definition: (a) isometric view ; (b) cross section with illustration of the geometric parameter explored in this study: 𝑅 is the inner dome radius, ℎ is the
shell thickness (constant all over the model), and 𝛼 the dome half-angle.
Table 1
Values of the geometrical parameters explored in this study for the dome
inner radius 𝑅, shell thickness ℎ and half-angle 𝛼. The latter is discretely
varied between 0◦ and 90◦.
Parameter (unit) Values

Inner dome radius 𝑅 (mm) [10; 15; 20]
Dome half-angle 𝛼 (◦) [0–90]
Shell thickness ℎ (mm) [0.5; 0.75; 1]

on the parameter 𝛼, which is used in the literature [41,42], to discrim-
inate between shallow and deep domes, corresponding respectively to
small and large values of this parameter. For practical purposes and
notably in order to ease experiments, this study focuses on thin shells
that can be handily manipulated and reconfigured. Consequently, dome
sizes are designed close to roughly the size of a human finger: inner
dome radii 𝑅 are chosen to vary between 10 and 20 mm, whereas
values of the thickness ℎ between 0.5 and 1 mm and of the dome half-
angle 𝛼 between 0◦ and 90◦ are explored. A summary of the studied
geometric parameters values is reported in Table 1.

2.2. Material

To investigate the bistable behavior of the domes both in experi-
ments and simulations, the chosen constituent material is a rubber-like
photocurable resin that goes under the commercial name TangoBlack
FLX 930 (Stratasys, France). To date, such polymer material has been
used to produce different types of highly deformable structures such as
porous Voronoi-type materials [56] and hierarchical beams [8]. Tan-
goBlack FLX 930 has a hyperelastic behavior and its constitutive law
has been modeled using the Neo-Hookean model [57], implemented in
Abaqus FE commercial software [58].

This model is described using a strain energy potential function that
depends on both the deviatoric and volumetric component of the strain
3

invariants, i.e. :

𝑊 = 𝐶10(𝐼1 − 3) + 1
𝐷1

(𝐽 𝑒𝑙 − 1)2 (2)

where 𝐼1 is the first strain invariant and 𝐽 𝑒𝑙 is the elastic volume strain
which accounts for the total and thermal volume strains. A detailed
explanation of the constitutive law provided by Eq. (2) is given in
Abaqus documentation [58]. 𝐶10 and 𝐷1 are related to the material
shear and bulk moduli: 𝜇0 = 2𝐶10; 𝐾0 = 2

𝐷1
. Experimentally measured

values for these two parameters reported in the literature [8] are used
in this study, namely 𝐶10 = 0.6 MPa; 𝐷1 = 1.10−6 MPa. It is noted in
passing that the constitutive material behavior considered in this study
does not account for visco-elastic properties, hence pseudo-bistability
of dome shells is not examined.

2.3. Numerical framework

In this work, numerical simulations were performed using the com-
mercial FE solver Abaqus (Dassault Systems) with standard implicit
formulation. Prior to describing the computational experiments carried
out to investigate bistability of embedded dome shells, the numerical
framework is presented hereinafter. All simulations were carried out
in a finite-strain setting, whereby the effects of geometric nonlinearity
were accounted for via the Abaqus command *NLGEO. Different nu-
merical methods have been exploited in prior works to study buckling
or snapping of structures. These include the Riks algorithm [40,59],
the Static Damping Method [40,45,60] as well as the implicit dynamic
analysis [33,45]. For the sake of completeness, it is noted in passing
that analytical approches have also been employed to study mechanical
instabilities [41,42] but have not been explored in the present work.
Here, the Static Damping Method is used to run the simulations. This
method consists in adding an artificial global damping coefficient in
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non-linear static analysis [60] in order to prevent fast dynamic displace-
ment during buckling. The damping forces are calculated as follows:

𝐹𝑣 = 𝜇𝑀(𝑢∕𝛥𝑡) (3)

With 𝐹𝑣 being the viscous damping force, 𝜇 the damping coefficient,
the artificial mass matrix, 𝑢 the displacement matrix and 𝛥𝑡 the

ime increment. This strategy is considered valid if the damping energy
emains small when compared to the strain energy computed at each
ime increment during the numerical simulation.

Prior to run the simulations, a convergence study has therefore been
onducted in order to find the damping coefficient 𝜇 that minimizes the
nfluence of damping on the FE results while ensuring computational
onvergence. This study has been performed on selected embedded
ome shell configurations, whereby only 𝜇 was varied. The values
btained for the damping coefficient 𝜇 are comprised between 𝜇 = 1 ∗
0−7 and 1 ∗ 10−8 (depending on the deepness of the shell), and are
n agreement with prior studies on multistable structures [32,45]. The
resent numerical framework based on the Static Damping Method has
een employed to run all computational experiments of this work. The
atter are described in what follows.

.4. Computational experiments

Computational experiments have been conducted using the previ-
usly described numerical framework. Two different sets of FE simula-
ions were performed for the range of embedded dome shell parameters
eported in Table 1, namely (i) a stability analysis and (ii) a strain
nergy asymmetry analysis. The former was carried out with the goal
f identifying the bistable and monostable domains. The latter was
erformed with the aim of quantifying the so-called energy barrier,
amely the strain energy required to switch from one stable state to
nother. Its ultimate goal was to identify the combination of dome
hell geometrical parameters for which the transition between the
wo stable states is strongly asymmetric (see Fig. 1). The results of
he computational experiments are discussed in Section 3 and aim to
rovide a novel roadmap for the design of embedded dome shells with
unable transition between two stable states.

To trigger instability and thus to study the mechanical response
f the dome shells, the loading was modeled by imposing a vertical
isplacement along the 𝑦 direction (see Fig. 2) at the top of the dome
hell, while the latter was clamped along its outer circular plate.
he applied boundary conditions (BCs) and loading are schematically
eported in Fig. 3. As seen, the displacement 𝛿𝑦 was applied onto a small
ircular area of radius 1 mm at the top of the dome. Numerically, this
as accomplished by imposing a kinematic coupling between the nodes
f the circular region (highlighted with red color in Fig. 3) and a control
oint arbitrarily defined (with all DOFs constrained). Because of the
mall finite-size area chosen to apply 𝛿𝑦, it is legitimate to assume that
he deformation of the shell remains fairly axisymmetric. The clamped
Cs were imposed at a distance 𝐷 from the center of the dome. Clamped
Cs were chosen in order to reproduce the integration of dome shell

n a system. The clamping distance 𝐷 is calculated proportionally to
he lateral size of the dome, designated as 𝐿 in Fig. 3(b). In this study

constant ratio of 𝐷∕𝐿 = 1.5 was used throughout the numerical
nalysis.

.4.1. Stability analysis
Prior to describing how the stability analysis onto the dome shells

as conducted, the basic lexicon of a curved shell bistability is here-
nafter recalled. Specifically, the two stable shapes of the embedded
ome are defined respectively as original and everted, see Fig. 4. The
ormer corresponds to the natural dome shape, the latter to the inverted
quilibrium shape achieved upon snap-through instability. For a curved
hell system, snap-through instability is associated with the rapid tran-
4

ition between the original and everted states corresponding to steps
and 2 in Fig. 4, whereas snap-back occurs when the system in its
verted state returns to its original shape corresponding to steps 3 and
in Fig. 4. Elastic instabilities of this type occur upon the application

f a compressive loading and can be triggered by numerous factors
e.g. geometry or material properties, see e.g. [34]).

The first set of computational experiments conducted in this work
as the stability study carried out with the goal of identifying the
ono- and bistable dome shell configurations for different geometrical
arameters. One typical computation of the stability study consists of
wo steps as sketched in Fig. 4: first, a vertical displacement is applied
t the top of the dome along the direction opposite to the 𝑦 axis
step 1 in Fig. 4). The magnitude of the applied displacement must be
ufficiently high to trigger the instability. Secondly, the system is let to
elax (step 2 in Fig. 4). No displacement is applied in this step. During
his computation, dome shells are deformed from the original state to
he everted state, then they remain in their everted shape if bistable,
hereas they relax back to original shape if monostable.

To discriminate between bistable and monostable configurations,
he computed strain energy was analyzed. A stable equilibrium state
orresponds to a strain energy local minimum. Hence, a bistable con-
iguration is a configuration that presents two minima in its strain
nergy landscape (two stable equilibria). To investigate the embedded
ome shell stability, the strain energy 𝑈 (here the total strain energy
f the numerical model, ALLSE in Abaqus) was computed at each
isplacement 𝒙

̃
increment during the loading step and the minimum

riteria were analyzed following the protocol used in prior studies [2].
hese read:
𝜕𝑈
𝜕𝒙
̃

= 0 (4)

𝜕2𝑈
𝜕𝒙
̃
2
> 0 (5)

For a deformed dome shell, a strain energy minimum can be iden-
tified when Eqs. (4) and (5) are satisfied at the same displacement 𝒙

̃increment. The case where only Eq. (4) is satisfied corresponds to a lo-
cal strain energy maximum i.e. an unstable equilibrium. Quadratic hex-
ahedral hybrid volumic elements with reduced integration C3D20RH
have been used to mesh the dome shell geometries for the stability
study. It is noted in passing that three-dimensional four-node shell
elements (S4R) could not be used to mesh the dome shell as the
hyperelastic Neo-Hookean model could not be implemented with this
type of elements. To overcome hourglass issues associated with reduced
integration elements, hourglass control was set to enhanced during the
computation. The number of elements has been determined through a
convergence analysis. The latter was found to vary with the dome half-
angle 𝛼, where increasing 𝛼 requires an increasing number of elements.
For shallow domes, around 18k elements were used, whereas, deeper
domes require around 23k elements.

2.4.2. Strain energy asymmetry analysis
The second set of computational experiments conducted in this work

was the strain energy asymmetry study carried out with the goal of
quantifying which combinations of dome shell geometrical parameters
lead to a highly asymmetric strain energy required for snap-back. The
quantification of such a asymmetric transition between the two stable
states can in turn provide novel geometric design rules for creating
morphing structures with programmable shape switch and strategy.
A recent example where asymmetric bistable systems are employed
is provided in Ref. [47]. The energy asymmetry study was carried
out only for bistable dome shell geometries identified by the stability
analysis (Section 2.4.1). It consists of two steps as illustrated in Fig. 4:
a loading step with a positive vertical displacement is first applied onto
the top of the dome shell (step 3 in Fig. 4). This is followed by a
recovery step (step 4 in Fig. 4) during which the system is let to relax.
During this computation, dome shells are deformed from the everted

state to the original one. For these computational experiments linear



International Journal of Mechanical Sciences 263 (2024) 108762F. Albertini et al.
Fig. 3. FE boundary conditions and loading of the geometrical dome shell model used throughout the computational experiments. (a) Isometric view showing the loading modeled
by imposing a vertical displacement 𝛿𝑦 at the top of the dome together with the clamped BCs applied at shell’s outer edge ; (b) top view of the geometrical model illustrating the
definition of the clamping distance 𝐷 and the lateral size of the dome 𝐿.
Fig. 4. Flow chart representing the steps during computational experiments: first, the stability analysis allows to identify monostable and bistable configurations (steps 1 and 2),
and then the asymmetry analysis allows to compute the strain energy required for state switching (steps 3 and 4). Each analysis requires one loading step and one recovery step.
hexahedral hybrid volumic elements (C3D8RH) have been used in order
to minimize the computational time. The number of elements used
to ensure convergence of the results as well as the hourglass control
strategy are detailed in Section 2.4.1.

2.5. Experimental methods

To validate the results of the FE simulations, the mechanical behav-
ior of the embedded dome shells was investigated experimentally for se-
lected dome geometries. Experiments were conducted onto 3𝐷-printed
test samples that were subjected to a compressive loading applied
by means of dead loads. The sample manufacturing and experimental
protocol are described hereinafter.

2.5.1. Experimental sample manufacturing
Test samples have been 3D-printed using a Stratasys EDEN 260

VS 3D-printer using TangoBlack FLX 930 resin. This 3D-printer uses a
5

Polyjet technology where micrometric sized droplets with resolution
of ca. 16 μm of liquid photopolymer are deposited layer by layer onto
a build tray and cured instantly under UV light [61–63]. The PolyJet
technology was selected for its high-accuracy of the 3𝐷-printed parts
as shown by earlier studies on structures with complex geometry [8,
56,62,63].

From the computational experiments, two bistable configurations
have been chosen for manufacturing and experiments. Notably, test
samples with two selected combinations of the inner radius 𝑅 and half-
angle 𝛼 were selected and 3𝐷-printed, namely (𝑅 = 15 𝑚𝑚, 𝛼 = 45◦)
and (𝑅 = 20 𝑚𝑚, 𝛼 = 40◦). Samples are presented in Fig. 5(a). Each of
these two configurations has been printed with the same thickness ℎ =
0.5 mm. As seen, a small hole of radius 2 mm has been manufactured
at the top of the dome samples in order to apply experimentally the
compressive load (see Section 2.5.2). Consequently, the numerical mod-
els of the dome shell geometry used for comparison with experiments
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Fig. 5. (a) 3𝐷-printed test samples with (𝑅 = 15 mm, 𝛼 = 45◦) at left and (𝑅 = 20 mm, 𝛼 = 40◦) at right. Both samples have equal thickness ℎ = 0.5 mm ; (b) FE-equivalent
geometrical model with applied BCs and vertical displacement 𝛿𝑦 applied at the top of the dome to simulate the compressive force in experiments ; (c) a fixture system that
encloses the test sample by means of a series of bolts. (d)–(e) Testing set-up used to study the mechanical behavior of selected dome shell geometries. It consists of (d) a loading
system that allows to apply dead-load weights on the sample, laying on the support table. The displacement is recorded via a laser-head shown in (e).
were also designed to contain the small hole at the top of the dome,
see Fig. 5(b).

2.5.2. Experimental set-up and protocol
A novel experimental testing set-up is proposed in this work to

measure the load–displacement response of dome shell structures. It is
presented in Fig. 5(e) and comprised several parts that were fabricated
using Fused-Deposition-Modeling (FDM) 3D-printing technology. The
experimental set-up was designed to reproduce faithfully the clamped
BCs used for computational experiments (see Figs. 5(b), (c)). The fixture
system is composed of two plates bolted together and encloses the
test samples (see Fig. 5(c)). The friction resulting from the bolting
system allows to reproduce the clamped BCs. The top plate of the
fixture system is made of transparent polymer (thermoplastic PMMA
with materials properties 𝐸 = 3.0 GPa ; 𝜈 = 0.37) chosen to allow the
centering of the sample. This was achieved with the help of a groove
manufactured into the polymeric bottom plate (made of thermoplastic
ABS with material properties 𝐸 = 1.5 GPa ; 𝜈 = 0.3). The fixture
system enclosing the sample is laying on a support table in order to
allow the application of the compressive force via dead loads, see
Fig. 5(d). In previous work [64,65], dead loads have been successfully
used in order to trigger elastic instability in soft structures. To apply the
compressive force, the loading system is composed of a rod and plates
assembly (made of ABS) on which weights can be stacked (see Fig. 5(d)
with the rod and plates in blue and weights in black). Weights have
been manufactured using FDM 3D-printing in the form of thick disks,
whereby changing the thickness allowed to attain different masses. To
measure the vertical displacement a laser head (Keyence LK-G152) was
used with displacement accuracy below 1 μm. The laser head is placed
at a certain distance from the testing set-up in order to record the
displacement of the rod top part from above, see Fig. 5(e). To ease the
measurements, the rod was designed to contain a small circular plate
at its top see Figs. 5(d), (e). The latter serves as contact surface with
the top of the dome, as well as mirror surface for the laser head.

Experiments were carried out following the protocol described here-
inafter. First, the sample is placed inside the fixture system and is
carefully centered. The assembly is then put on the support table under
the laser head, and the loading system is inserted through the sample’s
hole. The laser head is set to zero. After the installation steps, weights
are incrementally added to the loading system until the snapping
occurs. For each added weights, the displacement is recorded. After
snapping, all the weights are removed to record the position of the
second stable state. It is, however, important to note that as the loading
system itself has a mass, the exact position of the first and second stable
state cannot be measured directly using the current set-up. The initial
6

and final measured positions are therefore offset with the displacement
corresponding to the loading system mass. Each experiment is repeated
four times to ensure repeatable measurements, whereby only the order
of the applied weights is changed in order to get as close as possible to
the onset of instability.

3. Results and discussion

In this section, the results of both experiments and simulations for
the mechanical response of embedded dome shells are presented and
discussed. It consists of three subsections. Specifically, the results of the
parametric numerical stability analysis of embedded dome shells are
first presented in Section 3.1 and the load–displacement response for
selected dome geometries are compared with the results of experiments
in Section 3.2. Finally, the results of the strain energy asymmetry
analysis are reported in Section 3.3, whereby an index is proposed to
quantify the energy barrier asymmetry, which constitutes the novelty of
this work.

3.1. Dome shell structures stability

This subsection is organized as follows. First, the salient features
of a representative embedded dome shell structure are discussed (Sec-
tion 3.1.1), whereas the mono- and bistable domains resulting from the
parametric study are given in Section 3.1.2.

3.1.1. Computational investigation of the bistability of an embedded dome
shell

The load–displacement and corresponding strain energy 𝑈 curves,
computed using the numerical framework described in Section 2.3, are
reported in Fig. 6(a) for a representative bistable dome geometry. The
latter is defined by the following geometrical parameters: inner radius
𝑅 = 10 mm, dome half-angle 𝛼 = 52◦ and thickness ℎ = 1 mm. Fig. 6(a)
represents the transition from the original to the everted state, which in
turn corresponds to the dome shell snap-though behavior. In Fig. 6(a)
the load–displacement curve is depicted in black color, whereby a solid
and a dotted lines are used respectively to indicate the loading (from
1 to 4 ) and the recovery step (from 4 to 5 ). The strain energy

is instead reported in red color. To provide an exhaustive description
of the bistability dome shell features, the different deformation profiles
for the dome bottom edge are extracted from the FE results at discrete
deformation steps, and are reported in Fig. 6(b). Likewise, isometric
views of the dome half-section extracted from the computations are
given in Fig. 6(c) to enrich the discussion.
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Fig. 6. Numerical response of a representative bistable dome shell geometry with inner radius 𝑅 = 10 mm, dome half-angle 𝛼 = 52◦ and thickness ℎ = 1 mm. (a) Representative
load–displacement and strain energy curves during stable states transition and corresponding deformation profiles of the dome (b) bottom edge and (c) half-section at discrete
deformation steps.
Different deformation stages can be observed during the transition
from the first to the second stable state. The first stage 0 corresponds
to the first stable state of the dome and is considered to be stress free.
As the load increases, the plate and the dome begin to buckle (stage 1 )
and undergo large deformations until the peak load is reached (stage
2 ). As seen in Figs. 6(b), (c) the corresponding deformed shapes of

the dome exhibit a wave-like geometry with deformation localized at
the dome top. Past this point, the load starts decreasing until it changes
sign. The third stage 3 thus represents the onset of instability and is
also an unstable equilibrium point with 𝜕𝑈

𝜕𝑥 = 0). Past this stage, the
dome does not need any additional loading to reach the second stable
state. As the displacement continues to increase, the dome shape is
in its everted state (see Figs. 6(b), (c)), and the load increases again
until the end of the loading step (stage 4 ). The recovery step lets
the system relax without any applied displacement, and reaches the
second stable state (stage 5 ). This point corresponds to a strain energy
well that fulfills both stability conditions (see Section 2.4) . Moreover,
since the second stable state is a strain energy equilibrium point with
𝑈 ≠ 0, this point is consequently not stress-free. This observation
is corroborated by Figs. 6(b), (c) at stage 5 . Interestingly, one can
observe the everted shape of the dome is not faithfully correspondent
to the original one. Examples of load–displacement curves for dome
geometries corresponding to 𝑅 = 10 mm, ℎ = 1 mm and varying dome
half-angle 𝛼 are reported in Fig. 7. These parameters lead to dome shell
structures that are either monostable and bistable. Load–displacement
curves are depicted using respectively a solid line for the transition
from the original state to the everted state (snap-through) and dotted
line for the transition from the everted state to the original state (snap-
back). Likewise step 0 and step 5 correspond to the two equilibrium
state, i.e. original and everted. Displacements have been normalized by
dome heights 𝐻 so that all plots can be displayed in the same graph,
and different colors correspond to different values of the half angle 𝛼
value, all else equal.

From Fig. 7, one is able to discriminate dome that exhibit a monos-
table response (black curve) from those whose response is bistable
(color curves). Notably, the system becomes bistable with the increase
of 𝛼 and notably for 𝛼 ≥ 42◦ (colored lines). Moreover, the load peak
also increases with increasing 𝛼, the deeper the shell the higher the
load peak. Interestingly, by varying 𝛼 the load–displacement curve for
the loading and relaxation step is not the same. A difference is observed
7

for 𝛼 ≥ 55◦. It is expected that this change of path influences the energy
barrier asymmetry, as it is discussed in Section 3.3.

3.1.2. Stability domains
Results of the parametric stability analysis conducted for dome shell

geometries with values of the parameters given in Table 1 are re-
ported hereinafter. Following the numerical protocol described in Sec-
tion 2.4.1, stability domains were identified numerically. It is noted in
passing that around 50 computations have been conducted to this pur-
pose. Results are summarized in Fig. 8, whereby bistable and monos-
table region correspond to the blue and light red areas. Specifically,
data are reported as a function of the dome inner radius 𝑅 and half-
angle 𝛼, whereas the thickness ℎ was increased from ℎ = 0.5 to
ℎ = 1 mm. As seen, the thickness of the shell ℎ shifts the border
between the two domains, and it is highlighted with shaded blue color.
Equally important, one can observe that changing the distance 𝐷 to the
clamped BCs also varies the domain boundaries. Specifically, increasing
𝐷 decreases the bistable domain, which implies that the clamping BCs
influences the ratio of stretching to bending energy of the dome shell
in agreement with earlier work [45].

Collectively, data reported in Fig. 8 are consistent with prior stud-
ies [40,41,45]. Notably, they show that the bistable domain increases
with the increase of dome radius 𝑅 and half-angle 𝛼. It is noteworthy to
observe that, in the present study, values of the dome thickness above
ℎ = 1 mm were not explored. Prior work [40,41] shows that past this
value the bistability domain decreases.

3.2. Experimental results

Prior to presenting the experimental results and their comparison
with the simulations, it is worth mentioning that, although several test
samples were 3𝐷-printed with different geometrical parameters, only
two geometric configurations could be exploitable for experiments (see
5(a)). The other samples prematurely broke during manipulation, very
likely due to a severe strain localization exceeding the strain at failure
of the constituent polymer. To overcome the issue with the limited
number of available samples for experiments, we opted to design and to
fabricate another fixture system that enabled the same geometry to be
tested under different BCs, namely with different clamping distances 𝐷.
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Fig. 7. Numerical response of dome shells with inner radius 𝑅 = 10 mm, thickness ℎ = 1 mm and varying half-angle 𝛼 = 52◦. These geometries correspond to structures with
either a monostable (black curve) or bistable response (color curves). Solid lines correspond to load path from original to everted stable state. Dotted lines correspond to the
reversed load path, from everted to original stable state.
Fig. 8. FE identified stability domains of embedded dome shells: monostable (in light red) and bistable (in blue shades) domains for different thicknesses ℎ (0.5, 0.75 and 1 mm)
depending on dome radius 𝑅 and dome half-angle 𝛼, with fixed parameter 𝐷 = 1.5*𝐿. The definition of all geometric parameters is recalled in the right part of the figure.
Specifically, two different distances have been considered : 𝐷∕𝐿 = 1.5
and 𝐷∕𝐿 = 2.0 and the resulting load–displacement curves measured
experimentally are reported in Fig. 9. Since the load was applied by
means of dead loads, the reported experimental curves are discrete.
As explained in Section 3.2, for each sample geometry and BCs, the
experiments were repeated four times and different color were used to
report the measured data (Fig. 9). In the interest of comparison, the
results of the FE simulations for the corresponding numerical dome
geometries are also reported (black solid lines in Fig. 9).

Collectively, data in Fig. 9 show a good agreement between ex-
periments and simulations, in turn confirming the robustness of our
numerical methods. Notably, the load–displacement is observed to in-
crease monotonically until the onset of instability, which is a precursor
8

of the elastic snap-through. Moreover, one can see that the experimental
points recorded after snapping are very close to FE results and that
the experimental unloading lies close to the FE curve. Interestingly,
the comparison between the load and displacement values at which
snapping occurs is also highly satisfactory. In the computations, the
latter corresponds to the point at which the load starts decreasing
(x symbol in Fig. 9), whereas in experiments it corresponds to the
maximum load. On the other hand, one can see that the attainment
of maximum load – followed by a rapid load decrease – observed in
the FE computations could not be captured in experiments. The reason
for this is simple. Since the loading system can only add incrementally
the weights (i.e. dead loads), the experimental force cannot decrease.
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Fig. 9. Comparison between FEM (black line) and experimental (colored line) load–displacement curves for two geometric dome shell configurations and two clamping distances
(i.e. 𝐷 = 1.5*𝐿 in (a), (c) and 𝐷 = 2.0*𝐿 in (b), (d).
Therefore, unlike the simulations, the experimental curves exhibit snap-
through behavior at peak load. Equally important, the absence of a
sharp maximum load in experiments can be rationalized by the way
the load is applied at the top of the dome. Such first load peak has
also been reported in experimental studies of thin domes [38] and
in bistable woven domes [66]. To investigate the influence of the
finite-size area on which the displacement is applied, additional FE
computations were carried out for different values of this parameter.
The results (reported in Appendix) show that the larger the surface
of applied displacement, the higher the load peak. Finally, comparing
pairwise Figs. 9 (a), (b) and Figs. 9 (b), (c) highlights the influence of
the distance 𝐷 to the clamped BCs. As seen, increasing the distance
delays the onset of instability (i.e. the intersection with the zero load
line) and also increases the distance between the first and the second
stable state. Load levels are instead slightly affected, with lower values
at load drop in the case of the higher distance (Figs. 9 (b), (d)).

3.3. Asymmetric bistability of embedded dome shells

The results of the computational experiments carried out onto
bistable dome shells with the goal of quantifying the so-called energy
strength [52] for snap-back (Section 2.4.2) are presented below. In the
interest of clarity, these results are presented using a simple asymmetry
index, designated as 𝜏. This is defined as followed, e.g.

𝜏 =
𝑈1→2 − 𝑈2→1

𝑈1→2
(6)

In Eq. (6), 𝑈1→2 designates the strain energy necessary to switch
from the original as manufactured state to the everted. The former is
referred to as state 1 in Fig. 10(left) or as stage 0 in Fig. 6), whereas
the latter as state 2 in Fig. 10(left), or stage 5 in Fig. 6. Likewise, 𝑈1→2
designates the strain energy necessary to snap-back from the everted to
the original state. For embedded bistable dome shells, 𝑈1→2 is always
strictly superior to 𝑈2→1 (𝑈1→2 > 𝑈2→1). In other words, the strength of
stability of the original state is always superior to the strength of stabil-
ity of the everted state. The index 𝜏 is therefore constraint between 1
(high asymmetry, i.e. 𝑈1→2 ≫ 𝑈2→1) and 0 (low asymmetry, or equality,
i.e. 𝑈 = 𝑈 ). Results of the FE strain energy asymmetry analysis
9

1→2 2→1
for bistable dome shell geometries are reported in Fig. 10(right). In the
interest of clarity, selected results corresponding to dome geometries
with 𝑅 = 10 mm, ℎ = 1 mm and 𝐷 = 1.5*L and 𝛼 comprised between
42 ◦ and 90 ◦ are given.

Collectively, data show that the higher is the dome half angle 𝛼,
the lower is the asymmetry. Moreover, this plot can be broken down
into two separate parts, namely a high asymmetry part denoted 𝐴
(encircled with an orange dotted line), and a low asymmetry part
denoted 𝐵 (encircled with a green dotted line). It can be noted that at
the bistability limit (𝛼 = 42◦ in the case of this dome shell geometry,
see Fig. 9), 𝜏 is nearly equal to 1. The passage from A to B is abrupt,
and occurs in the case described in Fig. 10 between 𝛼 = 53◦ and
54◦. To rationalize the origin of the abrupt drop from 𝐴 to 𝐵, the
FE load–displacement curves corresponding to 𝛼 = 45◦ and 𝛼 = 70◦

are reported in Fig. 11(a). The dome with lowest 𝛼 (i.e. 𝛼 = 45◦),
called shallow shell, exhibits a load–displacement curve that is the same
when going from state 1 to state 2 and vice versa. Consequently, both
curves intersect the zero load line at the same absolute position. This
intersection with the displacement axis corresponds to the stability
state transition point. However, the displacement from the stable state
2 to the transition point being largely smaller than from the stable
state 1 to the transition point, the energy needed 𝑈2→1 is therefore
much lower than 𝑈1→2, explaining the high asymmetry. Unlike what
observed for the shallow dome, the dome corresponding to 𝛼 = 70◦,
called deep shell, presents a low asymmetry. The load–displacement
path from stable state 1 to stable state 2 is not the same than that from
stable state 2 to stable state 1, as shown in Fig. 11(a). Consequently, the
intersection between the displacement axis and the load–displacement
curve is different, as can be seen on Fig. 11. The distance between the
two stability state transition points, denoted as 𝛥, is thus non-null. It is
in turn reasonable to expect that as the distance from stable state 2 to
the state transition point increases, the strain energy 𝑈2→1 increases
correspondingly and the asymmetry decreases. Shells exhibiting this
behavior therefore are likely to present low asymmetry. To provide
evidence, Fig. 11(b) reports the evolution of 𝛥 as a function of the
dome half angle 𝛼 for all dome geometries studied in Fig. 10. The
results Fig. 11(b) confirm that, for all shallow dome shell geometries
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Fig. 10. (left) Definition of the strain energies necessary to switch between the first (original) and the second (everted) stable states. Specifically, 𝑈1→2 corresponds to the strain
energy associated with the transition from state 1 to state 2 (in blue), whereas 𝑈2→1 corresponds to the opposite transition (in red). (right) Definition of the asymmetry index 𝜏
and its corresponded values computed by means of FE simulations for a specific geometric configuration with varying 𝛼. Two distinct parts with high (A in orange) and low (B
in green) asymmetry can be observed.
Fig. 11. (a) Load–displacement curves for two dome shell geometries characterized by a low 𝛼 = 45◦ (A in orange) and a high 𝛼 = 70◦ (B in green), all else equal. The stability
transition points are defined with red and blue symbols and correspond to the minimum displacement necessary to trigger the snapping from one stable state to another. The
distance between these two points is denoted as 𝛥. (b) Evolution of the distance 𝛥 between stability state transition points as a function of the deepness of the shell. 𝛥 has a
positive finite magnitude for deep shells (𝛼 > 53◦, in green), whereas it is equal to zero for shallow shells (𝛼 ≤ 53◦, in orange).
(i.e. 𝛼 ≤ 53◦), 𝛥 = 0 mm. This distance abruptly rises when 𝛼 > 53◦ as
the deepness of the shell increases, entering the realm of deep shells.
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𝛥 grows quickly with the increase of 𝛼, explaining the reduction of the
asymmetry index 𝜏 with 𝛼.
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Finally, to provide an exhaustive roadmap for the design of bistable
embedded dome shells with tunable energy barrier asymmetry the asym-

etry index 𝜏 for all geometries explored in this study (see Table 1)
s reported in Fig. 12. For the sake of comparison, data are reported
s a function of both the dimensionless dome geometric parameter
defined in Eq. (1) (see Fig. 12(a)) and of distance 𝛥 between the

ransition points (see Fig. 12(b)). Collectively, data show similar trends.
otably, all computed values of 𝜏 collapse in one curve and a clear

eparation into the region of high and low asymmetry is observed.
pecifically, the high asymmetry region contains asymmetry indexes
between 0.99 and 0.86, whereas 𝜏 varies between 0.69 and 0.25 in

he low asymmetry region. No computed asymmetry indexes was found
etween the extreme values of those two parts. As Fig. 12 highlights,
he dimensionless energetic parameter 𝜏 proves an effective simple
arameter to quantify the asymmetric nature of bistability of dome
hells. Equally important, it can be nicely expressed as a function of the
imensionless parameter 𝜆 that is widely employed in studies of dome
tructures [38,39]. Therefore, the results in Fig. 12(a) provide simple
uidelines for the design of bistable dome shells. For example, if a high
symmetric bistable system is sought, its geometry should be chosen
o be described by 𝜆 between 4 and 5.5. Vice versa, to design highly
ymmetric bistable systems, 𝜆 must be chosen as high as possible.

The origin of energy strength asymmetry is two-fold. One relies on
geometry and imperfection sensitivity in agreement with recent studies
on spherical shells [67] and slender beams [8]. The other can be
explained on account of the fact that the everted state is not stress-
free as part of the strain energy is stored (see Fig. 10(left)). While this
energy landscape asymmetry has already been observed for bistable
valves that switch stable states for different pressure thresholds [47] or
for rotational bistable structures [68], its quantification is reported here
for the first time. Interestingly, it is noted in passing that asymmetry
can be obtained starting from symmetric systems. For example, Danish
et al. [69] obtained tailorable asymmetric energy landscape by attach-
ing a composite strip to a square bistable cross-ply laminate (which
displays symmetric behavior), whereas Wang et al. achieved tunable
asymmetry for bistable energy harvester [70].

4. Conclusions and perspectives

In this work, the mechanical behavior of embedded dome shell
structures was studied by means of both FE simulations and exper-
iments. The computations were carried out in a finite-strain setting
and stability was investigated for a variety of geometrical parameters,
whereas clamped BCs were used throughout the computational study.
Two sets of computations were conducted using the Static Damping
Method. The stability of dome systems was studied first, and the
results for a representative geometry were presented and analyzed.
They showed that the onset of snap-through instability occurs when
the load becomes equal to zero and that the everted dome shape
extracted form FE simulations is not stress-free. Moreover, the latter is
shown to differ from the original, i.e. as manufactured dome shape. The
geometrical parameters of the dome (i.e its inner radius 𝑅, thickness ℎ
and half-angle 𝛼) were then varied systematically in order to identify
the mono- and bistable domains. Specifically, our results showed that
the bistable domain increases with the increase of dome radius 𝑅 and
half-angle 𝛼 in agreement with prior studies. To validate the numerical
results, experiments were then conducted onto 3D-printed test samples
of selected dome geometries and a dedicated set-up was designed and
fabricated to measure their load–displacement response. The agreement
proved very satisfactory, with the main difference being the occurrence
of snap-through instability in correspondence of the maximum load in
the experimental load–displacement curve. Given the robustness of the
numerical methods, the strain energy landscape for bistable dome shells
was then studied by means of computations. Results showed that, for
specific combinations of the dome geometrical parameters, the strain
energy required to switch from the original stable state to the everted
11

o

stable state is larger than that required for the opposite transition to
occur. This observation shows evidence of a energy strength asymmetry
in the dome shell behavior. The mechanisms underlying the asymmetry
were investigated and an asymmetry index 𝜏 was proposed. The index
was calculated for numerous dome shell geometric parameters showing
that shallow shells (4.0 < 𝜆 < 5.5) exhibit high asymmetry, whereas
deep shells (𝜆 > 5.2) do not. This result was rationalized on account of
he load–displacement path exhibited by the dome upon loading and
nloading. The latter was shown to be identical for shallow dome shells,
hich then require a lower strain energy upon unloading. Collectively,

he results of this work can be used as a design guideline for the con-
eption of smart multistable systems that harness the tunable bistability
f embedded dome shells.
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ppendix. Comparison between FE and experimental results

It has been seen that experimental load–displacement curves differ
rom FE computed results. This section proposes explanations for the
bserved differences.

The experimental loading system is composed of 2 parts, one of
hem being in contact with the top of the dome (see Fig. 5(d)) through a
ing-shaped flat surface. This contact is used to apply the displacement.
owever, the real contact surface between the dome and the part

s unknown although it has an important influence on the shape of
he FE load–displacement curve. Fig. A.13 presents the comparison
f 3 different contact surfaces, their influence on FE results, and is
ompared with corresponding experimental curves for one geometric
onfiguration.

The ring-shaped contact surface can be described by its inner radius
𝑖 and its outer radius 𝑅𝑒. By design, 𝑅𝑖 is equal to the dome hole

adius: 2 mm. Three cases have been numerically explored in Fig. A.13,
orresponding to three contact surface sizes: small size (𝑅𝑒 = 2.1 mm,
hin black line), medium size (𝑅𝑒 = 2.5 mm, medium black line) and the
arge size (𝑅𝑒 = 3.0 mm, thick black line) that corresponds to the size

f the loading system part flat surface. It can be seen that the contact
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Fig. 12. Strain energy asymmetry index 𝜏 for different embedded dome shell parameters 𝑅, ℎ and fixed parameter 𝐷 = 1.5*𝐿 as a function of the dimensionless dome geometric
parameter 𝜆 (a) and of distance 𝛥 between the transition points (b). Shallow shells present high asymmetry index (𝜏 between 0.99 and 0.86, above the orange line), while deep
shells present lower asymmetry index (𝜏 between 0.69 and 0.25, below the green line).
Fig. A.13. FE load–displacement curves for different sizes of the applied displacement surface, and comparison with experimental results; definition of the displacement surface
corresponding to experimental conditions, and depiction of dome buckling that corresponds to the observed FE load peak.
size has an important influence on the shape of FE curves, particularly
on the load peak, the displacement at load drop and even the position
of the second stable state. The largest surface induces the highest load
12
peak, that corresponds to the buckling of the top of the dome. The
smallest surface shows a lower initial peak, and the corresponding
curve has a shape similar to those of dome shell without hole. The
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load drop of the smallest surface is close to the experimental peak load.
Increasing the surface also has the effect of decreasing the displacement
at load drop, and consequently the position of the second stable state.

It is expected that the actual contact surface changes as the dome
shell deforms under the applied displacement. A way to improve the
FE modeling could be therefore to use contact analysis using CAD
geometries of both sample and loading system part.
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