
Journal of Physics D: Applied Physics

J. Phys. D: Appl. Phys. 57 (2024) 445001 (10pp) https://doi.org/10.1088/1361-6463/ad6a22

Anhysteretic strains in ferroelectric
ceramics under electromechanical
loading

Chaimae Babori1,2,∗, Mahmoud Barati1,2,3, Valentin Segouin1,2, Romain Corcolle1,2

and Laurent Daniel1,2
1 Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de
Paris, 91192 Gif-sur-Yvette, France
2 Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris,
France
3 EMITECH Group, 3 Rue des Coudriers, 78180 Montigny-le-Bretonneux, France

E-mail: chaimae.babori@centralesupelec.fr

Received 22 March 2024, revised 20 June 2024
Accepted for publication 1 August 2024
Published 9 August 2024

Abstract
This study investigates anhysteretic strains in PZT ceramics. The anhysteretic curves are
associated with a stable balanced state of polarization in the domain structure, excluding
dissipative effects related to mechanisms such as domain wall pinning. Anhysteretic
measurements are representative of an -ideal- scenario in which the material would undergo no
energy loss due to dissipative processes, focusing on the stable and reversible aspects of the
domain configuration. The different methodologies employed to measure deformations under
electromechanical loading are presented, leading to the introduction of digital image correlation
(DIC) as the chosen technique, recognized for its ability to capture detailed information on
transverse and longitudinal strain. The article then describes a procedure developed to obtain
anhysteretic strain and anhysteretic polarisation for different levels of compressive loadings. The
subsequent presentation of the results of the transverse and longitudinal strain analyses provides
valuable insights into the reversible and irreversible behavior of the material. They can be used
as a basis for the thermodynamical modelling approaches grounded on separating reversible and
irreversible contributions or as a validation of existing models describing anhysteretic behavior.
The compressive stress affects both the shape of hysteretic and anhysteretic curves. The
anhysteretic curve represents a stable equilibrium in the domain structure. Compressive stress
reduces strain by affecting the pinning of domain walls. These points justify the interest in
studying the effect of compressive stress on the anhysteretic behavior of ferroelectrics.
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1. Introduction

Ferroelectric materials are widely used in actuators [1],
sensors [2, 3], harvesting devices [4] and converters [5] due
to their exceptional electro-mechanical properties. In the past
decades, these properties have been extensively investigated
by characterizing the hysteretic polarization and strain induced
by an electrical loading or mechanical stress [6–10]. These
studies have led to a better understanding of the impact of
hysteretic effects on material properties, such as the electro-
mechanical coupling coefficient d33 [11–13] and the dielec-
tric permittivity ε33 [14]. They form an essential basis for
making robust industrial designs [15], such as Ferroelectric
Random Access Memory (FeRAM), where the polarisation-
electric field hysteresis in ferroelectric materials is exploited
for non-volatile memory storage [16]. Similarly, strain-electric
field hysteresis has been deliberately utilized in the design of
precision actuators and motors for applications requiring con-
trolled mechanical movement [17].

The separation of reversible and irreversible contributions
is crucial for understanding the behavior of ferroelectrics.
Zhou et al in [18] estimated the reversible contribution of
polarisation and strain by partially unloading the sample dur-
ing the application of the electric field. While Rayleigh beha-
vior has been associated by some authors with a so-called
reversible contribution, despite dissipation occurring in the
Rayleigh zone [19], the term ‘reversible’ is used here accord-
ing to its fundamental meaning: the reversible part of the beha-
vior is its non-dissipative component. Anhysteretic behavior
then refers to the theoretical energy equilibrium a material
would attain under an applied field if there were no hyster-
esis. Although it is practically impossible to eliminate hyster-
esis entirely, the method outlined in this paper and detailed
in [20] approximates this behavior in a step-by-step manner.
Anhysteretic curves offer another insight into the behavior of
ferroelectric materials by showing their reversible contribution
only as demonstrated in [20]. The non-reversible contribution
can be deduced a posteriori, from the difference between hys-
teretic and anhysteretic responses.

Anhysteretic curves offer. Non-reversible processes are
caused by internal defects such as lattice vacancies. These
defects produce dissipative forces that impede the motion of
domain walls. As a result, the material behavior is hysteretic,
involving energy dissipation and the appearance of remanent
polarisation and coercive field. Contrary to hysteretic curves,
anhysteretic curves are independent of the dissipative phe-
nomenon and only show the behavior of the material as it
would be if these phenomena were inexistent. Such inform-
ation can help the development of modelling tools to describe
the behavior of ferroelectrics [21, 22].

In this paper, anhysteretic curves are obtained by the applic-
ation of an exponentially decaying bipolar electric field [20].
The decaying electric field offers a way for domain walls
to overcome defects and reach a true equilibrium state. This
anhysteretic protocol was originally developed for ferromag-
netic materials [23–26]. It was recently shown that it could be
also successfully applied to ferroelectrics [20]. Anhysteretic

behavior has for instance been used for the study of tem-
perature effect on reversible and non-reversible contributions
in PZT [27]. In this paper a similar approach is applied for
the first time to determine anhysteretic strains in ferroelec-
tric materials. This last study gave a detailed explanation of
the experimental procedure required to measure anhysteretic
curves. It also showed a new way to separate the reversible
and dissipative contributions to material properties. However,
these studies were restricted to the measurement of the anhys-
teretic polarization only.

As for the hysteretic P-E loop, it is experimentally pos-
sible to measure the anhysteretic strain out of the classical
S-E butterfly loop. Ferroelectric strain is classically measured
by strain gauge [28] or linear variable displacement trans-
ducer (LVDT) [29]. These two methods require being posi-
tioned directly on the sample, and their suitability may be
constrained, particularly when dealing with small samples.
Moreover, they offer only one measurement point. These
drawbacks are presently avoided by using the Digital Image
Correlation (DIC) technique which is contactless and provides
a bi-dimensional mapping of longitudinal and transverse strain
on the sample [30].

The DIC technique was already introduced in a huge
variety of studies, including smart materials such as shape
memory alloys [31, 32] and magnetostrictive materials [33,
34]. Typically, the numerical displacement resolution of a DIC
setup is about 10−2 px. The physical resolution depends on the
image sampling length of the optical setup. Using a long dis-
tance microscope, it has been shown that ferroelectric strains
could be monitored, as the displacement resolution becomes
sub-micrometric [35]. The only requirement is that the surface
of the sample contains optical trackers (namely, a speckle pat-
tern) so that displacements can be extracted by the DIC pro-
gram. The speckle can be natural [36, 37] or painted [35, 38].

In this work, an experimental protocol is proposed for
measuring the longitudinal and transverse anhysteretic strains
of a ferroelectricmaterial under different levels of compressive
stress using DIC. The classical P-E and S-E hysteretic loops
are used as a reference for a quantitative comparison. The
anhysteretic strain curves are used to extract the evolution of
the apparent anhysteretic piezoelectric coefficients, the results
show a difference between the evolution of the apparent anhys-
teretic and hysteretic piezoelectric coefficients. Beyond the
method’s precision, the outcome can lay the groundwork for
modelling approaches based on a separation between revers-
ible and irreversible processes. Moreover, a deeper under-
standing of ferroelectric strain can provide valuable guidance
for refining the performance of piezoelectric materials in vari-
ous applications [38].

2. Experiment

2.1. Experimental setup

The test bench is specifically designed for the application of
an uniaxial electromechanical loading along the direction 3,
as illustrated in figure 1 [38], allowing the application of an
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Figure 1. Illustration of the loading cell (a) and overview of the entire experimental setup (b) [38]. Reproduced from [38]. CC BY 4.0.

electric field up to 4 kV mm−1 and a compressive mechan-
ical stress up to 100 MPa. The studied sample is a NCE55
from Noliac (commercial PZT). It is a 4× 4× 4 mm sized
bulk with silver electrodes and is initially unpoled. The spe-
cimen is positioned between two jaws, electrically insulated
from the ground by alumina components and is immersed in
a container filled with insulating liquid (Fluorinert FC-770) to
prevent electric arcs. The upper jaw (highlighted in red) fea-
tures a ball-joint mechanism connected to a HighVoltage amp-
lifier (TREK 20/20C-HS). The lower jaw (depicted in blue) is
connected to a capacitor of 2057 µF [7, 8] to measure the elec-
tric displacementD3. All bearing surfaces have been precisely
ground to ensure flatness within ±4 µm.

The compressive stress levels are ranged from 3 to
100 MPa. Throughout the experiment, the system maintains
control of the applied stress, ensuring variations of no more
than±6MPa. The sample strain is measured by Digital Image
Correlation (DIC). This technique allows the longitudinal and
transverse strain components to be measured simultaneously.
For this purpose, the sample is artificially speckled with white
paint and a black powder according to [35]. The speckled face
is one of the side faces, perpendicular to the electrodes. The
sample is imaged during the tests using a 9.1 Mpx camera
(Ximea MD091MU-SY) mounted on a microscope (Questar
QM100). The image acquisition speed is set to its maximum
value, i.e. 5 images per second. The captured images are post-
processed by the program CorreliRT3 [39] to extract the strain
values.

2.2. Experimental procedure

The anhysteretic polarization and strain curves are obtained in
a discrete way, from a set of chosen electric field values Ebias.
The anhysteretic curves are obtained from the collection of the
response points Pan(Ebias) and San(Ebias), which are measured
independently.

For illustration purpose, figures 2(a) and (b) show the
applied electric field E as a function of time, for the two cases

Ebias = 0 and Ebias = 2 kV mm−1. Figures 2(c) and (d) show
the corresponding polarisation response P(t) of the sample.

The E(t) signal consists in a sequence of four steps, as
described in figure 2(a). Firstly, under a static compressive
mechanical loading, the sample is subjected to an AC elec-
tric field with an amplitude EA, so as to describe a major loop.
In the 2nd step, an alternating decaying electric field [20] is
imposed according to the following equation:

E(t) = EA sin(ωt)exp(−kωt)+Ebias [1− exp(−kωt)] . (1)

With t the time, ω the angular frequency, EA the electric
field amplitude and Ebias the desired bias electric field. The
remnant electric field amplitude targeted after N cycles is set
as 2.23% of EA. The parameters f, k, EA andNwere set accord-
ing to the procedure described in [27]. The obtained values
are f = 0.5 Hz, k = 0.015, EA = 4 kV mm−1 and N = 69.
The desired bias electric fields for the anhysteretic curves are:
0, ±10, ±20, ±35, ±50, ±75, ±100, ±250, ±500, ±1000,
±1500,±2000,±3000 Vmm−1 for compressive stress of−3,
−25, −50, −75 and −100 MPa.

After the N cycles, the 3rd step starts and the electric field
is maintained constant, at Ebias. This step allows the anhys-
teretic points Pan(Ebias) and San(Ebias) to be measured (see
figures 2(c) and 3). This measurement is however made from
an unknown reference. A common and reliable reference must
then be found between the different anhysteretic points. For
this purpose, a sine electric field of amplitude EA and fre-
quency 50 mHz is added as a 4th step, to describe a major
loop. The center of the P-E loop is used as a new polarization
reference, by removing the quantity (Pmax + Pmin)/2. It also
helps in compensating the possible polarization drift [27] that
may have occurred from steps one to three.

No strain information is measured during the first two steps
(first major loop and decaying field). As described in the pre-
vious section, the anhysteretic strain is measured simultan-
eously by DIC. 10 images are obtained during the 3rd step and
100 during the last step. Every image acquired through digital
image correlation provides a strain mapping across the entire
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Figure 2. Electrical loading E(t) used on NCE55 (PZT) to measure the anhysteretic point at bias electric field (a) Ebias = 0 and (b)
Ebias = 2 kV mm−1 (b). The applied stress is σ =−50 MPa. The corresponding polarization responses of the sample are shown in graph (c)
and (d).

Figure 3. The graph shows the results for a compressive stress of 50 MPa, of the second and third steps, in red the P(E) loops
corresponding to the cyclic depoling of the NCE55, the blue point is Pan corresponding to the Ebias defined.

surface. Assuming homogeneity in the sample, averaging is
performed over the surface to derive a single value correspond-
ing to each level of the electric field. Figure 4 shows the S(E)
signal obtained during steps three and four of figure 2(a). It
is not easily possible to obtain a common reference between
stress levels. Therefore, each anhysteretic strain curve is plot-
ted with its independent strain reference value. The reference
values are arbitrarily chosen to be the state at the maximum
electric field: for each curve, images are correlated with the
image obtained at the maximum electric field (yellow point
on figure 4). The ten anhysteretic strains obtained during step
three are averaged to increase the measurement precision. The
resulting anhysteretic point is highlighted by a red circle.

3. Results and discussion

Figure 5 shows in red the P(E) signal obtained from
figures 2(a) and (c) (measurement of the anhysteretic point
at Ebias = 0). It also shows in blue the complete anhys-
teretic P-E curve obtained under −3 MPa and −50 MPa after
collecting all anhysteretic points. The anhysteretic curve fits

within the hysteretic loop. It passes through the origin and
reaches saturation at high fields. Hysteretic and anhysteretic
values are close at a high electric field since the saturation
state is equivalent in both cases. The anhysteretic polarisation
curve (blue curve) at a low electric field is more abrupt than
the hysteretic polarization curve (red curve) at the coercive
field. It is believed that the motion of domain walls is impeded
by pinning effects during the entire hysteretic loop, coercive
fields included. The susceptibility at the polarization reversals
is consequently reduced.

Figure 6 shows the anhysteretic S-E curve superimposed
on the classical S-E major loop. Figure 6(a) shows the lon-
gitudinal strain component and figure 6(b) the transverse one.
The S-E major loop is measured under a 1 mHz sine elec-
tric field. The zero-strain reference is defined to be the anhys-
teretic strain for Ebias = 0 (i.e. the depolarized material state).
Similarly, to the anhysteretic polarization curve, the anhys-
teretic strain curve fits within the S-E area. For a better
understanding of the differences between a hysteretic and an
anhysteretic state, the microstructural state of the material is
schematically illustrated at the grain scale for the three states
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Figure 4. S(E) signal obtained from the 110 captured images of the two final steps. The applied E(t) is the signal in figure 2(a) (Ebias = 0).
The reference point is illustrated by a yellow point.

Figure 5. P(E) anhysteretic response of NCE55 for a compressive stress of 3 MPa (left) 50 MPa (right) obtained following the protocol
designed in figure 2.

(figure 6(c)). The dashed lines represent the domain walls and
arrows show the domain direction.

State (1) corresponds to the minimal strain value of the S-E
hysteretic loop (near coercive field). At this point, the polar-
ization is switching from a positive value to a negative value.
The local polarization distribution is anisotropic. The volume
fraction of 90◦ oriented domains is maximum, as illustrated.
The longitudinal strain is then even lower than the longitudinal
anhysteretic strain at E = 0.

State (2) corresponds to the anhysteretic point at zero elec-
tric field. Similarly to state (1), the material is macroscopically
unpoled (P= 0). However, the domain distribution is quite dif-
ferent. In state (2), domains are randomly oriented, as opposed
to state (1) where domains are mainly aligned perpendicular to
the electric field direction. The macroscopic ferroelastic strain
is thus null in state (2), contrary to state (1) which exhibits a
negative strain.

In state (3), the longitudinal ferroelastic strain is maximum.
The polarization of domains is preferentially oriented in the
direction of the electric field. This microstructural state is the

same whatever the electric field history. In other words, both
the hysteretic and anhysteretic behavior led to this state over
the saturating electric field.

The longitudinal S-E loop amplitude is 3.75 × 10−3 and
the transverse S-E loop amplitude is 1.75× 10−3. The corres-
ponding anhysteretic strain amplitudes is 2.55× 10−3 (longit-
udinal strain) and 1.25 × 10−3 (transverse strain). The ratios
between transverse and longitudinal strain components are
similar for the hysteretic S-E curves (47%) and for the anhys-
teretic curves (49%). Assuming that the transverse strain S22
is equal to S11 (transverse isotropic behavior), this suggests a
negligible volume change of the sample during poling.

Anhysteretic strain measurements are performed over a
series of levels of unidirectional compressive stresses (paral-
lel to the electric field) to understand how ferroelectrics behave
under different stimuli and identify the reversible and irrevers-
ible behavior (figure 7).

Using strain at saturation as a reference would be optimal,
as this saturation microstructure is identical regardless of
the sample loading history. However, achieving saturation
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Figure 6. Longitudinal S-E butterfly loop (black solid line) and longitudinal anhysteretic strain curve (blue dots) (a); transverse S-E
butterfly loop (black solid line) and transverse anhysteretic curve (blue dots) (b) obtained for a NCE55, Noliac; Alteration of the
polarization of domains within a grain in response to the applied electric field (c). The major loops are obtained with a sine electric field of
1 mHz. Their error bars, in black, are about ±5 × 10−5.

demands a higher electric field, which poses a risk of breaking
the samples. Consequently, aligning the strain curves corres-
ponding to each stress level with the saturation point is not
feasible. Instead, they are positioned arbitrarily (figure 7).

Figure 8 shows the evolution of the apparent piezoelec-
tric coefficients d∗33 and d∗31 as a function of the electric field
for different levels of compressive loading. The piezoelectric
coefficients are calculated from anhysteretic strains curves,
with d∗33 =

S33
E and d∗31 =

S11
E .

The measurements indicate a monotonous evolution of
d∗33 and d∗31 with stress. The anhysteretic piezoelectric coef-
ficient d∗33 decreases with increasing magnitudes of compress-
ive stress. Initially, the rate of decrease is significant from 0
to −25 MPa, but then it starts to reduce. Around −100 MPa,
the decrease in d∗33 tends to reach saturation. Conversely,
d∗31 is observed to increase with increasing stress. The rate
of increase is notable from 0 to −25 MPa, but it starts to
slow down from −25 to −100 MPa, also showing a tend-
ency to reach saturation around −100 MPa. The evolution
of the anhysteretic piezoelectric coefficients is monotonous
compared to the evolution of the hysteretic piezoelectric coef-
ficients as shown in [38], where d∗33 and d∗31 exhibit a peak
between −25 and −100 MPa for low electric field. The stress
level corresponding to the peak increases as a function of the
applied electric field.

The study also examined the correlation between polar-
isation and strain, with measurements indicating a hysteretic
dependence of strain on polarisation (see figure 9). In partic-
ular, hysteresis decreases with increasing compressive stress
amplitude. It is also observed that at higher stress levels, the
anhysteretic curve tends to correspond closely to the skeleton
of the S-P butterfly curve.

Compressive stress decreases very significantly the dielec-
tric permittivity. Because the tests are performed at fixed
maximum electric field, the polarisation reached decreases
with the applied compressive stress. As a result, less domain
switching is involved, reducing the overall hysteresis area.
If the tests were performed at fixed maximum polarisa-
tion, the opposite would be found, with an increase of the
loop area with the applied compressive stress. The com-
pressive stress modifies the piezoelectric properties as shown
in the results section. These effects are explained as well
in [40].

Figure 10(a) shows an example of hysteretic and anhys-
teretic strain measurement (under no applied stress) and
figure 10(b) shows the evolution of the magnitude of strains
as a function of the applied compressive stress. It can be
noticed that the amplitude of strain (both hysteretic and anhys-
teretic) first increases with stress and then decreases. Indeed,
the theoretical saturation state is a configuration for which
domains are oriented close to the poling direction. The max-
imum strain amplitude is then obtained if the initial config-
uration (under no applied electric field) contains a maximum
of orientations perpendicular to the poling direction. Poling
will then induce more 90-domain switching, hence higher
strains. Because compressive stress facilitates the existence of
domains perpendicular to the stress direction, the strain amp-
litude logically increases with stress. At higher stress levels,
the applied electrical fields is not high enough to saturate the
material, hence the decrease of the strain amplitude. In other
words, stress contributes to decrease both the initial and final
strain levels, but at different rates. It can also be noticed that, as
compressive stress increases, the difference between the mag-
nitude of anhysteretic and hysteretic strains decreases. This
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Figure 7. Anhysteretic (connected dots) and hysteretic (line) strain-electric field curves of NCE55 for different levels of compressive stress.

can be explained by the fact that at high stress, stress dominates
the definition of both initial and high-field domain config-
urations. As a consequence, the strain amplitude, defined by

the contrast between these two domain configurations, is the
same independently of the electric field path, hysteretic or
anhysteretic.
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Figure 8. Evolution of the apparent anhysteretic piezoelectric coefficients under compressive loading. The dashed lines are a guide for the
eyes.

Figure 9. Longitudinal and transverse strain-polarisation curves of NCE55 for different compressive stress levels. The connected dots
represent the anhysteretic Strain-polarisation curve.

Figure 10. Ferroelectric strain: (a) Strain butterfly loop and anhysteretic ferroelectric strain curves under no applied stress. (b) The
magnitude of anhysteretic and hysteretic strains as a function of the applied compressive stress.
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4. Conclusion

In this study, a protocol is proposed for measuring the anhys-
teretic longitudinal strain and transverse strain of PZT by DIC
method. This concept of anhysteretic strain should help theor-
etical studies of ferroelectric behavior by separating the revers-
ible and dissipative contributions to the macroscopic behavior.
These anhysteretic measurements eliminate the influence of
defects and dissipation on material behavior. The anhysteretic
strain appears to be isochoric (the ratio between transverse and
longitudinal strain is very close to 50%). Anhysteretic curves
allow to differentiate between the stable configuration of the
domain structure and additional factors leading to dissipation,
such as defects. In this study such an approach was implemen-
ted to investigate the effect of compressive stress on both hys-
teretic and anhysteretic strain responses of a soft PZT.

The developed procedure contributes to the fundamental
understanding of ferroelectric behavior and holds promise as
a practical tool for advancing the design of synthetic ferro-
electric materials. The anhysteretic curve can be a major asset
in modelling ferroelectric behavior. The ability to distinguish
and analyze reversible and irreversible behavior independently
improves the ability to develop accurate models with a phys-
ical basis, contributing to the overall understanding of material
behavior.
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