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A B S T R A C T

The presence of mechanical stress significantly affects the performance of electrical machines, particularly in
terms of permeability and losses of core materials. A precise modeling of electrical machines requires to consider
such magneto-elastic couplings. An efficient approach needs a constitutive model to predict magneto-elastic
hysteretic characteristics and its implementation into numerical analyses. However, it is a challenging task for
engineers and researchers due to computational time and convergence issues. This paper deals with an approach
to model the magneto-elastic behavior of electrical steels using complex permeability. The complex permeability
function is used in this work for the first time in the literature to model the effects of stress. The proposed model
is quite amenable to numerical analyses and it reduces computational time significantly. Although, the proposed
approach is applicable to steady state or cyclic fields and it considers only reversible effects of stress. It provides
an alternative way to consider magneto-elastic coupled behavior in numerical analysis of electrical devices
involving magnetic materials. Computed results are in good agreement with measured ones with a maximum
error of 2.5% for different stress levels and frequencies.

1. Introduction

Magnetic properties of ferromagnetic materials, used in magnetic
circuits of electrical machines, are strongly affected by mechanical
stress which affects particularly permeability and losses of core mate-
rials [1,2]. In high-speed applications, due to design constraints (com-
pact design and reduced weight), the core materials generally have
more exposure to mechanical stresses [3,4]. Other main causes of in-
duced mechanical stress in the iron sheets are manufacturing processes
(e.g. cutting or stamping), assembly processes (e.g. shrink-fitting),
temperature gradients, and centrifugal forces [5,6]. Core losses are
more affected by compressive stress than tensile stress [7]. As an il-
lustration, the effect of mechanical stress on the magnetic properties of
a non-oriented (NO) material is shown in Fig. 1.

The magneto-elastic behaviour of ferromagnetic materials plays a
significant role in the performance of electrical machines [8–10], be-
cause of change in magnetic properties of electrical steel [11]. The
accuracy of loss computation is significantly affected if the analysis is
performed without considering stress effects [8].

Computational time and accuracy are two important aspects that
need to be considered during the design and analysis of electrical ma-
chines [12]. A significant amount of research has been done on the
estimation of iron losses in electrical machines subjected to mechanical
stress [3,4,13–16] but major issues remain, viz. lack of predictive
hysteretic constitutive magneto-mechanical model and complex nu-
merical implementation. Numerous hysteresis models for ferromagnetic
materials are available in the literature [17–19]. Among them Preisach
formalism and Jiles-Atherton (JA) model are widely used. Most of the
existing magneto-mechanical coupled models are built as extensions of
these classical magnetic hysteresis models. Preisach models have been
modified for consideration of stress-effects through their distribution
functions [20–23]. On the other hand, the JA model has been extended
in order to consider magneto-elastic effects using the concept of effec-
tive field [23–26]. Another model based on a multi-scale approach,
derived through the energy equilibrium for the description of anhys-
teretic magnetization, has been proposed [27]. The model is successful
in describing the magneto-elastic coupled behaviour of ferromagnetic
materials [28]. Implementation of complete hysteresis models in Finite
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Element Method (FEM) simulations is known as intrinsic approach
[3,29,30]. Since the approach considers comprehensive hysteretic de-
scriptions, it is a realistic description and very accurate to calculate
losses directly in the FEM formulation. However, numerical im-
plementation of these models leads to high computational burden and it
poses serious convergence issues [3,30]. Another approach is to de-
couple the single-valued non-linear curve (anhysteretic curve) for use in
field analysis (FEM) and to compute the loss at the post-processing
stage using an appropriate loss formula [31–33]. This approach is
known as a posteriori approach. A significant number of papers are
reported in the literature, which have used this approach in order to
consider stress effects [34–37]. This approach shows reduced compu-
tational time and simpler convergence properties compared to the in-
trinsic approach (implementation of complete magneto-elastic hyster-
esis model). However, the approach does not consider hysteresis effects
in the FEM formulation itself, which may affect its accuracy.

Another interesting methodology to describe magnetic properties is
a complex permeability based approach [38,39]. In this methodology,
non-linear hysteretic properties of core materials are represented by
elliptic (or linear) loops using complex permeability [39]. Applied first
without considering the effect of stress, the approach leads to a huge
reduction in computational time and shows no convergence issues due
to its linear nature. It provides a way to represent magnetic char-
acteristics of the core material as a function of frequency [40]. There-
fore, the approach is frequently used in high-frequency analysis such as
sweep frequency response analysis (SFRA) of power transformers
[40–42]. The computation of equivalent complex permeability can be
done using two approaches. The first method considers a fundamental
harmonic component of B and phase difference between B and H as the
hysteresis loss angle, and this approach is called Fundamental Har-
monic Method (FHM) [38]. The second method considers core losses to
compute the imaginary part of the equivalent complex permeability and
it also retains the exact values of Bmax and Hmax of the hysteresis loop.
This method is known as the equivalent core loss (ECL) approach [39].

This paper aims at offering a simple equivalent complex perme-
ability approach to designers and researchers for the estimation of
losses in electrical machines subjected to significant mechanical stress
levels. The present analysis here is restricted to model the effect of
mechanical stresses in elastic range. The approach consists of mod-
ification of tanh representation of complex permeability derived from
Maxwell’s equations. The effects of mechanical stress are modeled using
the equivalent complex permeability by representing its real and ima-
ginary part as a function of the stress. The non-linear stress dependence
of the complex permeability can be determined using measured loss
data at two different stress levels. The paper also discusses computation
of equivalent complex permeability using reluctivity with prior
knowledge of induction B instead of H, which is often the case in

numerical simulations (FEM) and standard measurement systems. The
proposed approach is first compared with conventional approaches
using FEM simulation of single sheet tester (SST) at zero stress condi-
tion, and it is found to give comparable accuracy with significant re-
duction in computational time. Thereafter, the approach is applied for
loss computation over a range of compressive and tensile stress levels
(up to 50MPa). The computed losses are in close agreement with
measured ones.

2. Complex permeability representation of magnetic
characteristics

The magnetic permeability of a material defines its ability to get
magnetized. For a ferromagnetic material, the hysteresis losses can be
represented in terms of phase difference ( l) between B and H. This
phenomenon is represented by a delay in the response (B) to the ex-
citation (H) and thus, B lags H by angle l, [43]. By considering B and H
in the phasor form, the permeability can be defined in complex nota-
tions as:

= = =µ B
H

µe µ jµl
j l

(1)

In addition to the hysteresis loss, in the presence of time-varying
magnetic fields, dynamic losses (classical eddy current and excess
losses) make the complex permeability frequency-dependent [38]. The
effective frequency-dependent complex permeability is derived from
the diffusion equation for a semi-infinite single sheet (as shown in
Fig. 2) as:

= j µH Hl
2 (2)

Here, is the electric conductivity of the magnetic material and is

Fig. 1. Variation of (a) Hysteresis loops at 1.5 T, 50 Hz for different stresses levels [7] (b) Permeability at different stress levels at 1.5 T, 50 Hz.

Fig. 2. Semi-infinite single sheet in z-direction with x dimensions much greater
than the y dimensions.
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the angular frequency of the excitation. In the figure, the magnetic field
in the z-axes varies along the y-direction.

Thus, Eq. (2) can be solved as:

= = +H
z

H H A e A ez
z z

y y
2

2
2

1 2 (3)

Here, = = = + = +j µ j µ j j µ j(1 ) /2 (1 )/l l l
2 , and

by applying boundary conditions as ( = =H b H b H( ) ( )z z max) for the
lamination in Fig. 2, Eq. (3) can be reduced to

=H H y
b

cosh
coshz max (4)

Using Eqs. (1) and (4), the effective complex permeability (µeff ) can
be calculated using the average magnetic flux density (Bavg) as given
below:

= = =

= = +
+

µ µ jµ µ H y dy

µ µ

( )eff
B

H H b b
b

l z

l
b

b l
j b

j b

1
2

tanh tanh(1 ) /
(1 ) /

avg
max max

(5)

In the above equation, , are propagation constant and skin depth
of electromagnetic field inside a conductor [44,45], respectively. These
parameters depend on permeability and conductivity of the material
and on the frequency. Eq. (5) can be used to model the effective com-
plex permeability as a function of frequency. The parameter (µl) is
derived by using µeff values calculated from hysteresis loops at different
frequencies, the maximum magnetic field Hmax being constant [38].

However, practical situations might be different since standard
measurement systems usually set a maximum value of the magnetic
induction Bmax which is maintained constant for measurements at dif-
ferent frequencies. In this case, the effective complex permeability is
calculated in terms of reluctivity using the energy loss. For a sinusoidal
flux density (B), the energy loss (P) per cycle is:

= =P H B dB H B dB
dt

dt( ) ( )
T T (6)

The flux density can be written as:

=B B emax
j t (7)

=dB
dt

j B emax
j t

The magnetic field intensity (H) can be computed as:

= = + = +H real B B e B t t( ) ( ) ( cos sin )c max
j t

max (8)

Substituting Eqs. (7) and (8) in Eq. (6) and integrating over one time
period, yields

= P
Bmax

2 (9)

Using the relations = =H B| | | |max max
H
B

max
max

, the real part of re-
luctivity can be computed as:

= | |2 2 (10)

Using Eqs. (9) and (10), the complex reluctivity is determined using
three frequency-loss data sets (here, loss data at 50, 1000, 2000 Hz are
used) in order to compute the frequency-dependent effective complex
permeability. Hence, non-linear hysteretic characteristics are basically
transformed into linear-elliptical hysteretic loops using the complex
permeability approach as shown in Fig. 3.

3. Modeling of stress effects using complex permeability

Magneto-mechanical characteristics of ferromagnetic materials can
be modeled using the frequency dependent complex permeability
function derived in Section 2. First, the effective complex permeability
can be computed using the components of complex reluctivity (Eqs. (9)

and (10)) at each stress level. Thus, the real and imaginary parts of the
complex permeability are made to change with the stress level. The
phasor representation of the effect of stress on B, H and is shown in
Fig. 4. In the figure, the magnetic flux density is kept constant. In the
phasor representation, <s s1 2 for compressive stress and >s s1 2 for
tensile stress.

Under compressive stress the hysteresis loop generally bends as
shown in Fig. 1 and higher H is required (as evident in Fig. 4)) to setup
a given flux density, and therefore the real part of complex permeability
decreases as shown in Fig. 1b. Thus, the phase angle eff between B and
H increases as the stress increases from s1 to s2 as shown in Fig. 4.
However, in case of tensile stress, the hysteresis loops straightens about
vertical axis and so the required H will be lower to setup a given B and
the phase angle ( eff ) decreases with increase in stress.

In the frequency-dependent complex permeability function Eq. (5),
the stress effects can be included through µl to represent these effects on
the losses and permeability [7]. The variations of real and imaginary
parts of µl with stress are shown in Fig. 5. Both real and imaginary parts
µlr and µli decrease as the compressive stress increases. On the other
hand they increase as the tensile stress increases. The following ex-
ponential function can be used to model the variation of µl for both
compressive and tensile stress conditions:

=µ µ elr lr
a

0
r s (11a)

=µ µ eli li
a

0
i s (11b)

Here µlr0 and µli0 are the real and imaginary part of µl at the zero
stress condition. s is positive for tensile stress and negative for com-
pressive stress. ar and ai are constants describing the behaviour of the
real and imaginary parts of the effective complex permeability with
stress and their values are different for compressive and tensile stresses.
These coefficients can be determined using loss-data sets at two stress
levels. Here, the loss data sets at 0 and±50MPa stress levels are
chosen to determine these parameters for both type of stress levels
(compressive (0 and −50MPa) and tensile (0 and 50MPa)). The ef-
fective complex permeability as a function of frequency and stress can
be written as:

=µ µ b
b

( , ) ( ) tanh
eff s l s (12)

where, = j µ ( )l s and the variation of complex permeability as a
function of compressive stress and frequency is shown in Fig. 6. From
the figure, one can infer that the variation of frequency dependency of
real and imaginary parts of complex permeability is significant for
compressive stress (Fig. 6a). In case of tensile stress (Fig. 6b), a notable
change is not observed for real and imaginary parts of complex per-
meability. The elliptic hysteresis loops at 1.5 T for frequencies 50 Hz
and 2 kHz with different stress levels is shown in Fig. 7.

4. FEM implementation of the proposed magneto-elastic complex
permeability

Hysteresis loops and corresponding losses are measured for non-
oriented electrical steel; grade-M235-35A using a single sheet tester
(SST). The measurement setup comprises a pneumatic tension and
compression unit as shown in Fig. 8a. Thickness and conductivity of
laminations used for measurement are 2b=0.33mm and

= ×2.08 10 S/m6 . The performance of the suggested approach is first
determined using other approaches (a posteriori and full hysteresis
implementation-intrinsic approach) for the zero-stress (unloaded) con-
dition. Then, the magneto-elastic complex permeability is applied to the
loss computation in a stressed (loaded) condition by simulating the SST
device. The geometry of the setup is shown in Fig. 8b.
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4.1. Intrinsic approach

In this approach, the JA model is integrated into the FEM for-
mulation. The governing field equation is [46]:

+ = =
µ

A
x

A
y

J NI
S

1 ( ) o
2

2

2

2 (13)

where, S and N are the cross-sectional area and the number of turns of
the winding, respectively. The circuit equation can be written as:

= + +U d
dt

R I d
dt

L I[ ] [ ]ext ext (14)

In the above equations, U is the supply voltage, I is the current
drawn, A is the magnetic vector potential, S is the cross-sectional area
of the conductor, and is the magnetic flux linkages with the winding.
Rext and Lext are the resistance and inductance of the winding and, µ is a
non-linear function of B, calculated using a hysteresis model. In FEM
formulation, the final field and circuit equations can be written as [39]:

+ + =K A T d
dt

A D I[ ][ ] [ ] [ ] [ ][ ] 0 (15a)

+ + =D d
dt

A R I L d
dt

I U[ ] [ ] [ ][ ] [ ] [ ]ext ext (15b)

The non-linear solver uses the local coefficient method (LCM) in the
fixed-point approach [47].

In the above equation, [K] represents the global coefficient matrix,
[T] and [D] correspond to the eddy current term and the source term
respectively [46]. For material modeling, hysteresis loops are ap-
proximated using the JA model in this analysis [39].

In the JA model, the minimum energy state of magnetic materials
can be represented using the anhysteretic magnetization [17]. It is
defined in terms of three parameters, a, , and Ms as:

=M M H
a

a
H

cothan s
e

e (16)

where, Man, is the anhysteretic magnetization. He is the effective field
and it can be written as:

= +H H Me (17)

where, M and H are the total magnetization and the applied magnetic
field.

The hysteretic behavior is obtained using the energy balance prin-
ciple with reversible and irreversible magnetization components [17].
It can be represented in its inverse form by the following differential
equation [30]:

Fig. 3. Conversion of non-linear hysteresis characteristics to linear-elliptical hysteresis loops at 1.5 T.

Fig. 4. Phasor representation of B, H, and complex reluctivity at two different
stress levels (Compressive stress: <s s1 2 and Tensile stress: s1 > s2).

Fig. 5. Variation of (a) real part of µl (b) imaginary part of µl with stress at 1.5 T.
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c
µ
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dH

dM
dH o

dM
dB

irr
e o

an
e

an
e

irr
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where, B and Mirr are the flux density and the irreversible magnetiza-
tion, µo is the free space magnetic permeability, and is the directional
parameter with the value +1 for dH/dt> 0 and −1 for <dH dt/ 0. The
model is applied on a measured hysteresis loop (1.5 T, 50 Hz) of a non-
oriented material (M235-35A) sample. Optimized parameters are given

in Table 1. The surface plot of flux density (in the sample) and the
computed current waveform are shown in Fig. 9.

4.2. A posteriori approach

In this approach, FEM analysis is carried out using the anhysteretic
curve and the total losses are calculated at the post-processing stage
[33,31]. The loss model is given as [31,32]:

= + +P k fB k f B k f Bh max e max ex max
2 2 2 1.5 1.5 (19)

Here, k k,h e, and kex are the hysteresis, classical eddy current and
excess loss coefficients respectively. Bmax and f are the peak induction
value and frequency respectively. The loss coefficients can be de-
termined using measured loss-frequency data. The FEM analysis is
performed with an anhysteretic curve, determined from the JA model
as given in intrinsic approach.

Fig. 6. Variation of complex permeability at 1.5 T as a function of frequency at different stress levels (a) compressive stress (b) tensile stress.

Fig. 7. Linear-elliptical hysteresis loops for different stress levels at (a) 50 Hz (b) 2 kHz at 1.5 T.

Fig. 8. (a) SST with a unit to apply mechanical stresses [7] (Source: RENAULT-SAS, Guyancourt, France) (b) Geometric overview of SST.

Table 1
Optimized JA parameters.

Parameter Optimized values

Ms ×1.22 106 A/m
a 85 A/m
k 70 A/m

×2.0 10 4

c 0.1
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4.3. FEM analysis using complex permeability approach

A time-harmonic analysis is used involving complex permeability
and the loss is computed by the area of the elliptic B H loop. The final
FEM equation can be obtained from Eqs. (13) to (14) as [40]:

+ + =K A j T A D I[ ][ ] [ ][ ] [ ][ ] 0 (20a)

+ + =j D A R I j L I U[ ] [ ] [ ][ ] [ ][ ] [ ]ext ext (20b)

Here, the elements of the K matrix are complex quantities and Eq.

Fig. 9. Simulation results (a) surface plot of flux density of the sample region shown in Fig. 8b (b) the computed current waveform.

Fig. 10. Simulation results (a) surface plot of flux density of the sample region shown in Fig. 8b (b) flux lines.

Table 2
Comparison of three approaches.

Approaches Computed
values (W/kg)

Measured
values (W/kg)

computational time
(s)

Intrinsic approach 2.20 2.28 1891
Extrinsic approach 2.17 2.28 450
Complex

permeability
2.40 2.28 2

Fig. 11. Comparison of measured and calculated loss using time-harmonic FEM for induction level of 1.5 T (a) 50 Hz (b) 2 kHz.
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(20) is solved in the frequency domain. The surface plot and line plots
of magnetic flux density are shown in Fig. 10.

4.4. Comparison of the different approaches

The performance of the three approaches discussed previously can
be compared in terms of accuracy and computational time, as given in
Table 2. The accuracy of the complex permeability is reasonably com-
parable to the intrinsic approach. Also, a huge reduction in computa-
tional time is obtained by using the complex permeability approach.

The approach can now be applied to compute losses under me-
chanical stress conditions using the magneto-elastic complex perme-
ability given by Eq. (12). The loss is computed at 1.5 T for a frequency
from 10Hz up to 2 kHz.

4.5. Results and discussion

FEM simulations of the SST device are carried out for each stress

level using the stress-dependent complex permeability. Computed and
measured losses for different compressive and tensile stress levels are
shown in Fig. 11. Maximum error among all stress levels at different
frequencies is around 2.5%. Model parameters for 1.5 T for compressive
and tensile stresses are given in Table 3. The same method is also
carried out to compute losses for maximum induction levels of 0.5 T
and 1.0 T (given in Figs. 12 and 13). Since the compressive stress affects
the core loss more significantly than the tensile stress, these analyses
are performed only for compressive stress levels. Model parameters for
these induction levels are given in Table 4.

The magneto-elastic model using complex permeability can be re-
presented using a simple function of stress over a wide range of fre-
quencies. The model involves very few parameters, and hence it needs
less measured data for parameter identification process which is
straightforward. The magneto-elastic effects can be considered in the
FEM analysis of electrical machines using the proposed approach. The
present approach is isotropic, which particularly ignores stress-induced
anisotropy since the magnetic permeability is described as a scalar.
However, the anisotropy can be introduced using a tensor form of the
effective complex permeability as reported in [45]. Moreover, the ap-
proach has been applied to simple configurations with uniaxial loading.
If the loading is multi-axial, the present approach can be used with
equivalent uniaxial stress derived from the equivalence between 2D and
1D magnetostrictive energies [48,49].

Fig. 12. Comparison of measured and calculated loss using time-harmonic FEM for induction level of 0.5 T (a) 50 Hz (b) 500Hz (c) 2 kHz.

Table 3
Parameters of complex permeability model for Bmax =1.5 T.

Type of stress µlr0 µli0 ar (MPa−1) ai (MPa−1)

Compressive ( < 0) 0.0013 ×6.89 10 5 ×6.52 10 9 ×7.19 10 9

Tensile ( > 0) 0.0013 ×6.89 10 5 6.0611× 10 10 4.591× 10 10
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5. Conclusion

This paper is devoted to the modeling of magneto-elastic properties of
electrical steels using a complex permeability approach. In this work a
frequency-dependent tanh function for complex permeability, derived
using Maxwell’s equations, has been improved to consider magneto-
mechanical effects. Complex permeability has been calculated using re-
luctivity which is determined using energy loss. The magneto-mechanical
effects on permeability and losses are incorporated in the complex per-
meability. The presented work compares the proposed approach with the
conventional intrinsic and a posteriori approaches using the FEM mod-
eling of a single sheet tester under the unloaded condition. The work also
discusses the computation of equivalent complex permeability using the
reluctivity with a prior knowledge of induction B instead of H, which is of
in line with standard measurement systems. The complex permeability
approach shows a significant reduction in computational time with

reasonable level of accuracy as compared to the existing approaches. The
proposed magneto-elastic complex permeability is thereafter used to si-
mulate the SST device under mechanical loading conditions. Computed
losses are in close agreement with the measured losses.

An advantage of representing core material using complex perme-
ability is that all loss components can be considered in a single function
for a wide range of frequencies. The model can be applied successfully
over a wide range of frequencies as the skin-effect phenomenon is taken
into consideration. Reduction in computation time and simplicity are
the main attractive features of the model. The model could also be
extended to consider anisotropy, rotational flux, and multiaxial nature
of induced mechanical stresses in practical devices [48], which is
identified as a future work. Application of the model in FEM simula-
tions of rotating machines has also been identified as a future work.

Data availability

The measured data required to replicate these results cannot be
shared at this time as the data also forms part of an ongoing work.
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Fig. 13. Comparison of measured and calculated loss using time-harmonic FEM for induction level of 1.0 T (a) 50 Hz (b) 500Hz (c) 2 kHz.

Table 4
Parameters of complex permeability model for different induction levels and
compressive stresses.

Induction level µlr0 µli0 ar (MPa−1) ai (MPa−1)

0.5 T 0.012 0.0105 ×4.47 10 8 ×7.73 10 8

1.0 T 0.0116 ×6.5 10 3 4.32× 10 8 7.42× 10 8
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