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Abstract
Anisotropic magnetoresistance (AMR) is the basic phenomenon of a spread class of sensors.
AMR effect has a strong mechanical stress dependence. Micromagnetic simulations are often
used for modelling the magnetoresistance of ferromagnetic materials, but these approaches do
not allow us to investigate macroscopic effects (for example behaviour of a polycrystal under
stress) due to the high number of interactions and degrees of freedom. On the other hand
macroscopic phenomenological approaches fail in describing the main role of microstructure
on the effective behaviour. In this work a micro–macro model is proposed to describe the
effect of stress on the AMR in ferromagnetic polycrystals. Results are discussed and compared
with experimental data from the literature.

(Some figures in this article are in colour only in the electronic version)

Introduction

The anisotropic magnetoresistance (AMR) effect in ferromag-
netic materials (FM) was first discovered by William Thomson
in 1857. Due to its high sensitivity and flexibility of design it is
still used in a wide array of sensors for measurement of Earth’s
magnetic field (electronic compass) [1], for electrical current
measuring (by measuring the magnetic field created around the
conductor) [2], for traffic detection [3] and for linear position
and angle sensing [4].

The electrical resistivity in FM depends on the angle
between the direction of electrical current and orientation of
the magnetization in the material. This anisotropic dependence
lies in spin–orbit coupling. It is fundamentally related to
the larger probability of s–d scattering for electrons travelling
parallel to the magnetization [5]. As the magnetization rotates,
the electron cloud about each nucleus deforms slightly and this
deformation changes the amount of scattering undergone by
the conduction electrons in their passage through the lattice
[6]. Thus the AMR effect is strongly dependent on the local
magnetization in the material. In that sense it has some
similarities with the magnetostriction effect as discussed later
in this paper. On the other hand, owing to the magnetic domain

structure of FM, the distribution of magnetization within FM
is very heterogeneous. This is the reason why numerical
models for AMR effect are mostly based on micromagnetic
calculations [7–9]. In these approaches the number of degrees
of freedom and interactions are growing quickly with the
number of magnetic moments, so that these simulations can
only address small volumes corresponding to a limited number
of domains. If the effect of the microstructure on the overall
AMR properties is to be investigated—for example the effect
of crystallographic texture in polycrystalline media—these
methods are not relevant.

It is also known that the AMR effect has a strong
mechanical stress dependence [10]. Indeed mechanical stress
applied to a magnetic media changes the distribution of domain
orientations. As a consequence it modifies the local resistivity,
and thus the overall resistivity. This effect of stress on
magnetoresistance is for instance used as the basis for a
particular type of strain measurement gauges [11].

Some macroscopic phenomenological models for AMR
effect have also been proposed [12–14] but they cannot account
for microstructure or composition related effects. They have
to be identified on macroscopic measurements and cannot be
used as predictive tools for material design.
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Figure 1. Modelling strategy.

An intermediate approach, standing between micro-
magnetic and macroscopic modelling, would be useful in order
to provide a design tool sensitive to complex microstructural
effects, and notably accounting for the crystallographic texture.
Indeed this microstructural parameter can be controlled and
significantly modifies the overall AMR properties of FM. In
this work a micro–macro model for stress-dependent AMR is
proposed. This model is based on a magneto-elastic multiscale
model allowing the definition of the local stress and magnetic
field in heterogeneous materials from the knowledge of the
macroscopic loading. A phenomenological law for AMR
effect is then used at the local scale. A homogenization
step is finally performed to define the macroscopic change in
resistivity. This model can naturally account for the effect of
stress on the overall AMR effect, and includes the influence
of microstructural parameters such as the crystallographic
texture.

The paper is divided into three parts. In the first part
the micro–macro model is detailed. In the second part the
approach is validated thanks to experimental measurements
on iron, nickel and permalloy polycrystals taken from the
literature. The approach is finally applied in the third part
to the investigation of the effect of crystallographic texture
on AMR.

1. Micro–macro modelling

AMR effect depends on the local magnetization orientation,
itself depending on local magnetic field and stress (at the
magnetic domain scale). Owing to the heterogeneity of
materials, stress and magnetic field are not uniform within
the material. Their local values have to be determined
through an appropriate micro–macro scheme. Once these
values for the local loading are known, the magnetic domain
structure has to be determined, in order to define the local
magnetization (at the domain scale). A model for the AMR
effect can then be applied. The overall response of the material
(polycrystalline scale) is then obtained through appropriate
averaging operations. Thus, the model proposed in this paper is
based on a three-scale description (polycrystal, single crystal,
magnetic domain) and follows the scheme presented in figure 1.

The uppermost calculation scale in the model—called
macroscopic scale—is the polycrystalline representative
volume element (RVE) which is seen as an assembly of
single crystals or grains (g) with respect to a given orientation
function. The intermediate scale—called mesoscopic scale—
is the single crystal or grain, that is seen as a collection of
magnetic domains (α) with given magnetization orientation.
The lowest scale—called microscopic scale—is the magnetic
domain, that is an area with uniform magnetostriction strain1

and magnetization.
The main steps of this model are divided as follows.

(i) The localization steps aims at defining the local loading
(magnetic field Hα , stress σα and current iα) at the
microscopic scale as a function of the macroscopic loading
(magnetic field H , stress σ and current I). The loading
at the mesoscopic scale (magnetic field Hg , stress σg and
current ig) is calculated as an intermediate step. These
localization steps highly depend on the microstructure of
the material.

(ii) The microscopic magneto-elastic model allows us to
define in a statistical way the domain configuration,
introducing as an internal variable the volumetric fraction
fα of domains with orientation α in a grain g. In each
domain, depending on the considered orientation α, the
magnetization Mα and magnetostriction strain εµ

α are
known.

(iii) The microscopic AMR model allows us to define the
local resistivity (ρα) depending on the magnetization
orientation α in the considered domain.

(iv) The homogenization step allows us to retrieve the
overall response of the material at the polycrystal scale
(magnetization at the macroscopic scale M , macroscopic
magnetostriction strain εµ and the variation of the
macroscopic resistivity δ̃ρ) depending on the local values
of the response at the microscopic scale.

These steps are detailed hereafter. The magneto-elastic part
of the model is based on a reversible magneto-elastic model
previously published [15, 16].

1 Magnetostriction strain is the spontaneous strain undertaken by magnetic
materials.
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Table 1. Physical constants used for the modelling.

Coefficient MS K1, K2 λ100, λ111 As C11, C12, C44

Unit A m−1 kJ m−3 — m3 J−1 GPa
Iron [6, 10, 24] 1.71 × 106 42.7, 15 21, −21 (×10−6) 0.0020 238, 142, 232
Nickel [10, 25] 4.91 × 105 −5.7, −2.3 −45.9, −24.3 (×10−6) 0.016 250, 160, 118
Fe11Ni89 [10, 26] 7.50 × 105 −1, −2 −15, −10 (×10−6) 0.032 243, 148, 122

1.1. Localization step

The simplest assumption to define the microscopic loading
(Hα , σα , iα) as a function of the macroscopic loading (H , σ,
I) would be to consider uniform field hypotheses. Under such
hypotheses the localization rules are very simple (Hα = H ,
σα = σ, iα = I). However, due to the heterogeneity of the
materials, these assumptions are often inappropriate.

1.1.1. Macro–meso scale transition. In a polycrystal the
susceptibility from one grain to another can vary very
significantly. For instance in pure iron the permeability of a
grain can vary up to 70% at 400 A m−1 or 60% at 2000 A m−1

depending on its relative orientation with respect to the
magnetic field [17]. This heterogeneity results in a significant
heterogeneity of the magnetic field within the material. In the
case of polycrystals, the self-consistent scheme is known to
provide satisfying results. The macro–meso localization rule
is written as follows [16]:

Hg = H +
1

3 + 2χm
(M − Mg) (1)

M and Mg are the magnetization, respectively at the
macroscopic and mesoscopic scales. In the case of self-
consistent hypothesis χm is the overall magnetic susceptibility
of the material.

The elastic response to a given mechanical loading also
significantly differs from one grain to another in a polycrystal.
As an example in the case of pure iron Young’s modulus can
vary up to 115% depending on the crystallographic orientation
(see the elastic constants in table 1). The self-consistent
localization scheme is known to provide satisfying estimates
for polycrystalline media [18]. Under such hypotheses, the
macro–meso localization rule can be written in the following
form [16]:

σg = Bσ : σ + Linc : (εµ − εµ
g ) (2)

εµ and ε
µ
g are the magnetostriction strain, respectively, at

the macroscopic and mesoscopic scale. Bσ denotes the
so-called concentration tensor and Linc is a tensor accounting
for elastic incompatibilities due to magnetostriction. The way
to calculate these fourth order tensor can be found in [18, 16]
and is briefly recalled in the appendix.

In the case of the electrical resistivity, and as will be shown
in the following, the heterogeneity is weak. Depending on the
orientation of the single crystal, the electrical resistivity does
not vary more than a few percent. This is why we applied
uniform electric current conditions.

ig = I. (3)

1.1.2. Meso–micro scale transition. In the case of the
localization rules from the grain to the domain scale, an
accurate definition of the microstructure, namely the magnetic
domain structure, would be requisite2. This information is
unknown. For the sake of simplicity we assumed uniform
magnetic field, uniform strain and uniform current within the
single crystal. However in the proposed microscopic magneto-
elastic model, the mean values at the single crystal scale are
often sufficient data.

1.2. Microscopic magneto-elastic model

The magneto-elastic model for the single crystal is derived
from [15]. The single crystal is seen as an assembly of
magnetic domains. The potential energy of a domain α is
written:

Wα = WK
α + Wσ

α + WH
α (4)

where WK
α denotes the magnetocrystalline energy, Wσ

α denotes
the elastic energy and WH

α denotes the magneto-static energy.
In the case of cubic crystallographic structure the

magnetocrystalline energy can be written

WK
α = K1(α

2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2(α

2
1α

2
2α

2
3) (5)

where K1 and K2 denote the magnetocrystalline anisotropy
constants of the cubic crystal and α = t [α1α2α3] the direction
cosines of the magnetization (Mα = Ms α with Ms the
saturation magnetization of the material).

Under uniform strain hypotheses the elastic energy can be
written [16]:

Wσ
α = −σg : εµ

α (6)

In the case of cubic crystallographic symmetry, the
magnetostriction strain tensor εµ

α can be written as

εµ
α = 3

2




λ100
(
α2

1 − 1
3

)
λ111α1α2 λ111α1α3

λ111α1α2 λ100
(
α2

2 − 1
3

)
λ111α2α3

λ111α1α3 λ111α2α3 λ100
(
α2

3 − 1
3

)




(7)

where λ100 and λ111 are the magnetostrictive constants of the
single crystal.

The magneto-static energy of a domain is written as

WH
α = −µ0Mα.Hα (8)

where µ0 is the vacuum permeability.
We then introduce the volumetric fractions fα of domains

with magnetization orientation α [16, 19–21]. These internal

2 Except for the electric current since the hypotheses of weak heterogeneity
of the resistivity are still valid.
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variables are obtained through the numerical integration of the
following Boltzmann-type relation [15]:

fα = exp(−As.Wα)∫
α

exp(−As.Wα) dα
(9)

where As is an adjustable parameter that can be deduced from
low field measurement of the anhysteretic magnetization curve
[16] (As = 3χ0/µ0M

2
s where χ0 is the initial anhysteretic

susceptibility of the material).
The magnetostriction strain and the magnetization over

the single crystal are defined by an averaging operation over
the single crystal (volume Vg):

εµ
g = 〈εµ〉g = 1

Vg

∫
Vg

εµ dV =
∑

α

fα εµ
α (10)

Mg = 〈M〉g = 1

Vg

∫
Vg

M dV =
∑

α

fα
�Mα. (11)

If needed, the elastic strain εe
g in the single crystal can

be easily calculated from Hooke’s law (equation (12)) using
the single crystal stiffness tensor Cg . This elastic strain is
superimposed to the magnetostriction strain to obtain the total
strain of the single crystal (ε = εe + εµ).

εe
g = C−1

g : σg. (12)

At this stage, the macroscopic magnetization and
magnetostriction strain could also be calculated thanks to an
averaging operation over the whole volume of the RVE.

1.3. Single-domain model of AMR

Let β = t [β1 β2 β3] be the direction cosines determining the
orientation of the current used for measuring the electrical
resistance (α = t [α1 α2 α3] are still the direction cosines of
the magnetization in the considered domain). The general
expression for the magnetoresistance in any direction of a cubic
crystal can be written in a series form of α and β [13]. Döring
used the following form [10] for cubic crystals with negative
magnetocrystalline anisotropy constant3 K1 (such as nickel
and Fe11Ni89 permalloy):

ρα = ρ0
[
1 + k1

(
α2

1β
2
1 + α2

2β
2
2 + α2

3β
2
3 − 1

3

)
+ 2k2(α1α2β1β2 + α2α3β2β3 + α3α1β3β1) + k3

(
s − 1

3

)
+ k4

(
α4

1β
2
1 + α4

2β
2
2 + α4

3β
2
3 + 2s

3 − 1
3

)
+ 2k5(α1α2β1β2α

2
3

+ α2α3β2β3α
2
1 + α3α1β3β1α

2
2)

]
(13)

in which s = α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1 , ρ0 is the resistivity in the

demagnetized state and k1,k2,k3,k4,k5 are material constants.
For a crystal with positive magnetocrystalline anisotropy
constant4 K1 (such as iron) the expression is the same except
that the term k3/3 is absent.

3 In that case easy magnetization directions are 〈1 1 1〉 directions.
4 In that case easy magnetization directions are 〈1 0 0〉 directions.

1.4. Effective properties

The macroscopic magnetization and strain are obtained
through an averaging operation over the whole volume V of
the RVE.

M = 〈M〉V = 〈Mg〉V (14)

ε = 〈ε〉V = 〈εe + εµ〉V = 〈εg〉V . (15)

If needed, the macroscopic magnetostriction strain can be
obtained using the following relation [16]:

εµ = 〈tBσ : εµ〉V = 〈tBσ : εµ
g 〉V (16)

Since the local electric conductivity ςα in a domain is
known (ςα = 1/ρα), the effective macroscopic conductivity ς̃

can be obtained through a self-consistent approach, applying
the classical Bruggeman relation [17, 22, 23]. ς̃ is solution
of equation (17) that can be solved easily using a fixed point
method.

ς̃ =

〈
ςα

2ς̃ + ςα

〉
V〈

1

2ς̃ + ςα

〉
V

(17)

where the operation 〈.〉V is an averaging operation over the
whole volume of the RVE. The effective resistivity ρ̃ is deduced
from the effective conductivity (ρ̃ = 1/ς̃ ). In the following
the variation of the macroscopic resistivity δ̃ρ (equation (18))
will be plotted. It can be noticed from equations (13) and (17)
that δ̃ρ does not depend on the value of ρ0.

δ̃ρ = ρ̃ − ρ0

ρ0
. (18)

2. Validation on isotropic polycrystals

The proposed micro–macro approach has been validated on
isotropic iron, nickel and permalloy (Fe11Ni89) polycrystals.

2.1. Model parameters

The mechanical and magnetic characteristics of iron, nickel
and a permalloy (Fe11Ni89) single crystal were used5 for the
calculations. At the single crystal scale, for the calculation of
the volumetric fractions fα , a 10242 orientation (α) data file
was used [15]. The material constants are defined in tables 1
and 2. The distribution function for crystal orientation in the
case of isotropic polycrystals has been obtained by a regular
zoning of the crystallographic space [16]. The corresponding
pole figures are given in figure 2.

2.2. Prediction of the AMR effect

The similarity in the phenomena of magnetostriction and
magnetoresistance has been known for a long time. This
similarity is linked to the strong dependence of both
phenomena on the local magnetization state and thus on the
magnetic domain configuration. Our model is based on a

5 The accurate data of the constants of Döring expression of Fe11Ni89 were
not found. The constants of the Fe15Ni85 permalloy were used instead.
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Table 2. Constants of Döring expression.

Coefficient k1 k2 k3 k4 k5

Iron [10] 0.00153 0.00593 0.00194 0.00053 0.00269
Nickel [10] 0.0654 0.0266 −0.032 −0.054 0.020
Fe15Ni85 [27] 0.0518 0.0478 −0.0243 −0.0139 0.0259
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Figure 2. Pole figures for an isotropic polycrystal obtained from a regular zoning of the crystallographic space.
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Figure 3. Magnetostriction strain of nickel polycrystal as a function
of the change of resistivity (current and applied magnetic field are
parallel)—experimental data [10] and obtained numerical results.

micro–macro approach of the magneto-elastic behaviour of
the materials which can give the magnetostriction (λ(H))
and the magnetoresistance curves (δρ(H)). From these
results the relation between the change in resistivity and the
magnetostriction strain can be easily obtained. It is illustrated
in the case of isotropic nickel and pure iron polycrystals
without external stress and compared with experimental data
from the literature [10] in figures 3 and 4. These figures plot the
effective magnetostriction strain as a function of the effective
change in resistivity for parallel configuration (magnetic
field and electrical current are parallel). Experimental
observations show that magnetostriction strain first increases
with magnetoresistance and then decreases in the case of iron,
and magnetostriction decreases continuously in the case of
nickel. The different behaviour of these materials results from
the different sign in their material constants (magnetostriction
and Döring expression). The experimental curve is accurately
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Numerical results (no applied stress)
Numerical results (under applied stress)
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Figure 4. Magnetostriction strain of iron polycrystal as a function
of the change of resistivity (current and applied magnetic field are
parallel)—experimental data [10] and obtained numerical results
(dashed line: under 25 MPa tension applied in the direction of
magnetic field).

predicted by the model in the case of nickel. The experimental
curve for iron is qualitatively predicted, but quantitatively
overestimated. It is shown by the dot plot in figure 4 that
a macroscopic tension of amplitude 25 MPa applied in the
direction of the magnetic field provides a numerical result
closer to the experimental observation. This point shows that
a residual stress in the material could explain the discrepancies
in the case of the iron specimen.

2.3. Prediction of the effect of stress on the AMR

In order to study the effect of an applied uniaxial stress
on the magnetoresistance, modelling results were compared
with experimental results [10] on a permalloy (Fe11Ni89)
polycrystal. In this case the δ̃ρ(B) curves were calculated
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Figure 5. Change in resistivity (current and applied magnetic field are parallel) with change in magnetization of permalloy polycrystals
(Fe11Ni89), effect of the level of applied uniaxial stress (compression)—obtained numerical results (left) and experimental data [10] (right).

from the combination of B(H) and δ̃ρ(H) modelling results.
This permalloy has negative magnetostriction so that the
tension orients its domains perpendicularly to the direction
of tension and this effect decreases the initial resistivity.
The comparison between numerical and experimental results
(figure 5) gives very satisfying results. It shows the nonlinear
stress dependence as well. The stress decreases the initial
resistivity and increases the slope of the curves which is
important in the sensor application (higher sensibility in low
field measurement). The model can predict the effect of a
multiaxial stress as well but these results are not presented in
this paper due to the lack of experimental results for validation.

3. Investigation of crystallographic texture effect

The magnetoresistance in a single crystal is strongly
anisotropic. Figure 6 shows the change in resistivity in a pure
iron single crystal as a function of the angle between its easy
magnetization direction 〈1 0 0〉 and the applied magnetic field
in the {0 1 1} crystallographic plane. The change in resistivity
(under no applied stress) can vary up to several hundred percent
depending on the orientation of the magnetic field with respect
to the crystal orientation, both in parallel and perpendicular
configurations. As a consequence, the AMR effect can be
expected to be very sensitive to crystallographic texture.

In order to investigate this effect, the crystallographic
texture of an Armco specimen (pure iron), known as isotropic,
has been obtained from electron back-scattered diffraction
(EBSD) measurement. The corresponding pole figures are
given in figure 7. It shows a weak texture compared with
the calculated isotropic crystal orientation distribution used
previously and showed in figure 2.

The prediction of the AMR effect for pure iron using
this latter crystallographic texture has been compared with the
prediction using the isotropic orientation data file. Figure 8
shows the change in resistivity in the parallel current/applied
magnetic field configuration as a function of current orientation
in the polycrystal. In the case of Armco specimen two planes
(XY and YZ) have been investigated.
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Figure 6. Change in resistivity as a function of the angle between
the 〈1 0 0〉 direction and the applied magnetic field (105 A m−1) in the
{0 1 1} crystallographic plane—pure iron single crystal in parallel
(parallel magnetic field and electrical current) and perpendicular
(perpendicular magnetic field and electrical current) configurations.

It is shown that even for this very weakly textured material
the magnetoresistance can vary up to 10% depending on the
orientation of the solicitation (parallel configuration). The
magnetoresistance is confirmed to be strongly dependent on
crystallographic texture.

4. Conclusion

A micro–macro model for the effect of stress on the anisotropic
magnetoresistance has been presented. It is based on a
description of the magneto-mechanical coupling at several
scales (domain, single crystal, polycrystal). The behaviour
of iron, nickel and a permalloy (Fe11Ni89) polycrystal has
been calculated. Numerical results have been compared with
experimental results from the literature with very satisfying
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Figure 7. Pole figures of an Armco steel obtained from EBSD measurement.

Figure 8. Change in resistivity (current and applied magnetic field are parallel) with change in the orientation of the applied magnetic field
(105 A m−1) for pure iron polycrystal using an isotropic texture (dotted line) and texture data from EBSD measurement in different planes
(lines).

agreement. This model enables us to investigate the effect
of crystallographic texture on AMR effect and it highlights
the strong influence of crystallographic texture on it. It also
enables us to investigate the effect of stress, and notably
multiaxial stress on magnetoresistance. The development of
micro–macro models accounting for microstructure and stress
dependence of effective magnetoresistive properties should
allow the design of high precision AMR devices.
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Appendix. Calculation of mechanical localization
operators

We briefly give hereafter the way to obtain the fourth order
tensors Bσ and Linc appearing in section 1.1. More detailed
explanations can be found in [16, 18].

Bσ is defined by equation (19) that introduces the single
crystal stiffness tensor Cg , the polycrystal effective stiffness
tensor C̃ and the strain localization tensor Aσ .

Bσ = Cg : Aσ : C̃−1. (19)

Aσ is defined by equation (21) where C∗ is the so-called
Hill constraint tensor [18] that can be obtained from the
Eshelby tensor SE according to equation (21), I being the
fourth order identity tensor.

Aσ = (Cg + C∗)−1 : (C̃ + C∗) (20)

C∗ = C̃ : (SE−1 − I). (21)

Linc is defined by equation (22).

Linc = Cg : (Cg + C∗)−1 : C∗. (22)
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