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ABSTRACT:
A theoretical model is derived to extend existing work on the theory of acoustoelasticity in isotropic materials

subjected to uniaxial or hydrostatic loadings, up to the case of arbitrary triaxial loading. The model is applied to

study guided wave propagation in a plate. The semi-analytical finite element method is adapted to deal with the pre-

sent theory. Effects of triaxial loading on velocities of Lamb and shear horizontal (SH) modes are studied. They are

non-linearly dependent on stress, and this nonlinearity is both frequency-dependent and anisotropic. Velocity

changes induced by the effect of stress on the plate thickness are shown to be non-negligible. When a stress is

applied, both Lamb and SH modes lose their simple polarization characteristics when they propagate in directions

different from the principal directions of stress. The assumption that effects induced by a multiaxial stress equal the

sum of effects induced by each of its components independently is tested. Its validity is shown to depend on fre-

quency and propagation direction. Finally, the model is validated by comparing its predictions to theoretical and

experimental results of the literature. Its predictions agree very well with measurements and are significantly more

accurate than those of existing theories. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003630
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I. INTRODUCTION

The theory of acoustoelasticity (TAE) aims at predict-

ing the effects of mechanical stress on elastic wave veloci-

ties. It is based on the theory of finite elastic deformation.

One of the first developments of the TAE was proposed by

Hughes and Kelly,1 who based their work upon

Murnaghan’s theory2 on finite deformations of an elastic

body. They expressed bulk wave velocities in isotropic

materials subjected to hydrostatic or uniaxial stresses.

Toupin and Bernstein3 studied the case of infinitesimal

dynamic deformation superimposed on a finite static defor-

mation, extending the work of Hughes and Kelly1 to materi-

als of arbitrary symmetry. The TAE was used to measure

Murnaghan constants for polystyrene, iron, and Pyrex glass1

and for rocks.4 It was successfully used to estimate mechani-

cal stress in materials subjected to loads below yield

point,5–8 but failed to do so in materials having undergone

plastic deformation. This was studied by Crecraft9 in the

case of a nickel-steel bar subjected to beam loading beyond

the yield point, who showed that induced velocity changes

were not predicted by the theory. Thompson et al.10 studied

the case of an aluminium plate subjected to uniaxial loading

beyond the yield point, followed by unloading. They

described a nonlinear relationship between velocity changes

and applied stress in the plastic regime. This effect could

not be predicted by the theory. They also found that velocity

changes during loading differ from those during unloading,

suggesting that plastic deformation modifies elastic proper-

ties. In an attempt to model this effect, Kobayashi11 added

an extra term to account for plastic deformation [see Eq.

(124) in Ref. 12]. However, this adjustment failed at predict-

ing experimental results, as shown by Hirao and Pao.13 The

case of residual stress induced by welding was studied by

Schneider14 who showed that the theory requires the knowl-

edge of elastic properties of the base material, the weld

seam, and the heat affected zone. Otherwise, the theory

would be unable to predict measurements15

In the work presented here, the study is restricted to

loadings below the yield point and the assumption of homo-

geneous elastic properties is made.

TAE has been less often applied to guided waves (GW)

in plates than to bulk waves but several recent publications

provided new insights on GW in stressed plates. Gandhi

et al.16 applied the TAE as developed by Pao and Gamer17

to Lamb waves in plates subjected to biaxial loading, with

experimental validation in the uniaxial case. Shi et al.18

showed numerically that acoustoelastic effects (AEE)

induced by a biaxial stress can be decomposed into the

effects induced by the two principal components of stress.

Peddeti and Santhanam19 used the semi-analytical finite ele-

ment method (SAFEM) to compute velocity changes of

Lamb waves in the direction of the—uniaxial—applied
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stress. The authors also studied the case of a plate with stress

gradient in its thickness. Yang et al.20 studied the AEE in

guides of arbitrary cross section. Zuo et al.21 studied the

effect of biaxial and hydrostatic loadings on Lamb waves.

However, none of these authors16,18–22 have taken into

account the effect of stress on the thickness of the plate. This

effect was observed experimentally by Murayama et al.,23

who estimated the uniaxial stress during a tensile test, using

the two first symmetrical GW modes, namely, the shear hori-

zontal mode SH0 and the Lamb mode S0. They found out

that stress estimation using S0 velocity changes was less

accurate than that using SH0 and attributed this discrepancy

to the dispersive nature of S0 mode. It is shown in the present

work that thickness variations induced by stress cannot be

overlooked. Furthermore, we found that in Refs. 16 and

18–22, some of the assumptions made are questionable and

must be discussed.

On the basis of this review of literature, our findings on

the subject of GW propagation in a stressed plate are orga-

nized as follows. In Sec. II A, the works by Toupin and

Bernstein3 and by Norris24 on the TAE are followed, leading

to a general study for the equivalent stiffness tensor of a

material of arbitrary symmetry subjected to arbitrary stress.

In Sec. II B, the study is restricted to isotropic materials, and

the equivalent stiffness tensor is written for triaxial applied

stress. In Sec. III, the SAFEM is presented with slight

adjustments imposed by the TAE to solve the acoustoelastic

wave equation in guides. In Sec. IV, effects of stress on

Lamb and SH modes are studied. In Sec. IV A, it is shown

that when stress is applied, Lamb and SH modes couple.

In Sec. IV B, the effect of stress on plate thickness, thus,

on guided wave velocities, is studied. This effect cannot

be neglected and must therefore be fully included in the

TAE applied to GW. In Sec. IV C, the AEE is shown to be

non-linear. This non-linearity is both frequency-dependent

and anisotropic. In Sec. IV D, we investigate whether or

not AEE induced by a multiaxial stress tensor is equal to

the sum of AEE induced by each component of the tensor

taken separately. In Sec. V, predictions using the present

model (which is referred to as the acoustoelastic model,

AEM) are compared to experimental and theoretical

results by Gandhi et al.16 and theoretical results by Yang

et al.20

Throughout, Einstein’s summation convention on

repeated indices is used. Bold notations are used for vecto-

rial and tensorial variables.

II. THEORY

The theoretical development of the TAE presented

hereafter is divided into two main subsections. In the first

(Sec. II A), we follow works by Toupin and Bernstein3 and

by Norris24 on the TAE. The stiffness tensor of an elastic

material subjected to arbitrary static loading is expressed.

The subsection is restricted to the basics of the theory, but

more detailed calculations accompanied by a discussion on

impact of assumptions, are to be found in the Appendix. In

the Sec. II B, the stiffness tensor of a stressed material is

explicitly written as a function of Cauchy stress and the

elastic properties of the material in the stress-free state. This

subsection generalizes results found in Ref. 25.

A. TAE

The development of the TAE starts with the identifica-

tion of three states of the material. The natural state SN is

the state of reference, relative to which velocity changes are

measured. It is not necessarily stress-free, provided that the

elastic properties are known. Having said that, we take the

natural state in the present work to be un-stressed, consider-

ing, we are interested in studying the effects of stress rela-

tive to non-stress. The initial state SI is the state of the

material after it has undergone a static elastic deformation

from its natural state. The final state Sf results from the

superimposition on the initial state of a dynamic deforma-

tion—in what follows, that associated with wave propaga-

tion—supposed to be small compared to the static one.

Consider a material point P and a rectangular Cartesian

coordinate system R i1; i2; i3ð Þ, taken as the stationary frame

of reference. Its position in the natural state is denoted by n,

in the initial state by X and the final state by x. As the final
state includes dynamic terms, quantities related to this state

are time-dependent. For the sake of compactness, their time-

dependency is omitted from their notations. Figure 1 shows

the various variables and notations introduced in this

section.

Displacements of P from one state to the next are

denoted by

uI ¼ X � n; uw ¼ x� X; u ¼ x� n: (1)

The deformation gradient tensor F, the Lagrange strain ten-

sor E, the Cauchy stress tensor r and the nominal stress ten-

sor N (i.e., the transpose of the first Piola-Kirchhoff stress

tensor) from the natural to final states are given by

F¼ @x

@n
; E¼ 1

2
FTF� Ið Þ; r¼ F

J

@W

@F
; N ¼ @W

@E
FT ;

(2)

where I, J; and W denote the identity matrix, the Jacobian

determinant, and the elastic deformation energy from the

natural to final state, respectively. W can be written as a

Taylor series3,24 of E as

W ¼ 1

2
CijklEijEkl þ

1

3!
CijklmnEijEklEmn: (3)

This expression is referred to as the constitutive non-linear-
ity, since by deriving the energy W with respect to the strain

E, one gets a non-linear constitutive relation. The second

non-linearity is referred to as the geometric non-linearity,

which is represented by the use of the non-linear Lagrange

strain tensor E (see the Appendix). These two non-

linearities are the sources of the various AEE.
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Cijkl and Cijklmn are the second and third order stiffness

tensors in the natural state, defined by

Cijkl ¼
@W

@Eij@Ekl

����
E¼0

; Cijklmn ¼
@W

@Eij@Ekl@Emn

����
E¼0

:

(4)

Due to the symmetry of E and to the fact that @W=@Eij@Ekl

¼ @W=@Ekl@Eij, the tensor Cijkl possesses the following

symmetries:

Cijkl¼Cijlk¼Cklij¼Cklji¼Clkij¼Clkji¼Cjikl¼Cjilk: (5)

The equilibrium equation in the initial state and the equation

of motion in the final state, are written as functions of the

nominal stress as

rn � NI ¼ 0; rn � N ¼ q0

@2uw

@t2
; (6)

where q0 denotes the density of the material in the natural
state and NI denotes the nominal static stress in the initial
state. Instead of writing the equilibrium equation and the

equation of motion using the variables N; q0; and n, the var-

iables r; q q ¼ q0=Jð Þ and x could have been used.3,26

However, the choice of variables made here allows the use

of physical quantities expressed in the natural stale, which

are supposed to be known.

The equation of motion Eq. (6) is linearized (as detailed

in the Appendix) and written as a wave equation in the fol-

lowing form:24,27

Ceq
abkl

@2uw
k

@Xb@Xl
¼ q0

@2uw
a

@t2
: (7)

In Eq. (7), the equivalent stiffness tensor Ceq describes the

stiffness of an elastic body of arbitrary symmetry subjected

to an arbitrary load. It is decomposed as

Ceq
ijkl ¼ Cijkl þ

X3

q;r;m;n¼1

 "
dikCjlqr

@uI
q

@Xr
þ Crjkl

@uI
i

@Xr
þ Cirkl

@uI
j

@Xr

þ Cijrl
@uI

k

@Xr
þ Cijkr

@uI
l

@Xr

#
þ Cijklmn

@uI
m

@Xn

� �!
: (8)

The second term (in brackets) originates from the geometri-
cal nonlinearity and the third originates from the constitu-
tive nonlinearity.

Equation (7) describes the propagation of a wave in a

medium subjected to an initial static loading. The solution

of this equation, in general (arbitrary symmetry and load-

ing), is impractical for two reasons. First, it involves a large

number of parameters for Ceq(21 for Cijkl, 56 for Cijklmn, and

9 for uI
k;l), which in practice are hard if not impossible to

know. Second, the expression of Ceq does not explicitly use

the true stress (Cauchy stress r). These two issues are dealt

with in the next subsection.

B. Equivalent stiffness Ceq as a function of Cauchy
stress r

Expressing the equivalent stiffness Ceq as a function of

Cauchy stress r is crucial to study the effect of stress on

elastic waves. To do that, the method presented here slightly

differs from those found in Refs. 16 and 18–22 as we con-

sider debatable some of the assumptions made by their

authors. In particular, approximating the Cauchy stress ten-

sor for the second Piola-Kirchhoff tensor [see, for example,

Eq. (11) in Ref. 16 or Eq. (34) in Ref. 19], and assuming the

latter to be linearly related to the linear part of the strain ten-

sor in the initial state [see, for example, Eq. (13) in Ref. 16

or Eq. (35) in Ref. 19], result in the loss of both the constitu-

tive and the geometric nonlinearities in the initial state. This

seems to be inconsistent with the development of the TAE

for two reasons. First, the various AEE result from both the

constitutive and geometric nonlinearities. Second, in the

development of the TAE, elastic deformation from initial to

final states (associated with the elastic wave) is supposed to

be much smaller than that from natural to initial states.

Therefore, if the latter (i.e., the deformation from the natural

to the initial states) is treated linearly, then a similar treat-

ment must also be applied to the former (i.e., the deforma-

tion from the initial to final states).

Here, the nominal stress tensor is used and no approxi-

mation relative to Cauchy stress tensor is made.

Furthermore, both the constitutive and the geometric nonli-

nearities in the initial state are preserved.

The problem at hand is simplified by restricting the

study to the case of elastic isotropic materials (in their natu-

ral state). In this case, the elastic deformation energy WI

from the natural to initial states is independent of the direc-

tion and therefore is only a function of the invariants of

Lagrange strain tensor from the natural to the initial states

EI. It can be written as25

FIG. 1. Schematic representation of variables and notations introduced in

the present section.
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WI ¼ kþ 2l
2

� �
I2
1 � 2lI2 þ

n

3
I3 þ m� n

2

� �
I1I2

þ
l� mþ n

2
3

!
I3
1;

(9)

where l;m; n denote Murnaghan constants, k; l denote

Lam�e constants, and I1 ¼ tr EIð Þ; I2 ¼ tr EI2
� �

; I3 ¼ tr EI3
� �

denote the invariants of EI.

Upon using the rule of differentiation of the trace of a

matrix function by a matrix [i.e., @tr F Xð Þð Þ=@X ¼ f Xð ÞT ,

where f is the scalar derivative of F], and substituting Eq.

(9) into Eq. (4) yields

Cijkl ¼ k dijdkl þ l dikdjl þ dildjk

� �
; (10a)

Cijklmn ¼ 2l� 2mþ nð Þdijdkldmn

þ 2m� nð Þ dijIklmn þ dklImnij þ dmnIijkl

� �
þ 1

2
n dikIjlmn þ dilIjkmn þ djkIilmn þ djlIikmn

� �
:

(10b)

where Iijkl ¼ (1/2)(dik djlþ dil djk). The assumption of isot-

ropy reduced the number of parameters involved in the

expressions of Cijkl from 21 to 2 (k; l) and of Cijklmn from

56 to 3 (l;m; n). To further reduce the number of parameters

in Ceq, the isotropic material is taken to be subjected to a

homogeneous deformation. When it is the case, the position

X of the material point P is given as a function of n as26

X1 ¼ k1n1; X2 ¼ k2n2; X3 ¼ k3n3; (11)

where k1; k2; k3 denote the principal stretches in the princi-

pal strain directions, which are chosen (without loss of gen-

erality) to coincide with i1; i2; i3ð Þ. They are constant since

the deformation is homogeneous.

Under these assumptions, Ceq; EI; FI; and JI are now

written as

Ceq
ijkl ¼Cijkl kiþ kjþ kkþ kl� 3

� �
þ
X3

q;m¼1

dikCjlqq kq� 1ð ÞþCijklmm km� 1ð Þ
� �

; (12a)

EI
ij ¼

1

2

X3

k¼1

@Xk

@ni

@Xk

@nj
� dij

!
¼ 1

2
k2

i � 1
	 


dij;

FI
ij ¼

@Xi

@nj

¼ kidij; and JI ¼ k1k2k3:
(12b)

A homogenous deformation takes place in an isotropic mate-

rial when subjected to triaxial loading rI ¼ diag rI
1; r

I
2; r

I
3

� �
,

rI
1¼

1

k2k3

"
k5

1

�
l

4
þm

2

�

þ l

4
ðk1k

4
2þk1k

4
3þ2k3

1k
2
2þ2k3

1k
2
3Þ

þ
�

l

2
�m

2
þn

4

�
k1k

2
2k

2
3þk3

1

k
2
þl�3l

2
�m

� �

þ k
2
�3l

2
þm

2
�n

4

� �
k1k

2
2þk1k

2
3

	 


�k1

�
3k
2
þl�9l

4
�n

4

�#
: (13)

Similar formulas are found for rI
2 and rI

3 by simple cyclic

permutation of indices 1, 2, and 3.

We now introduce the principal strains Ei defined as

Ei ¼ ki � 1. In an isotropic metallic material subjected to

loading below yield point, these strains are small compared

to 1. This allows approximating 1=k2k3 in the form of a

Taylor series by

1

k2k3

� 1� E2 þ E3 þ E2E3ð Þ þ E2
2 þ E2

3

� �
: (14)

Replacing ki by 1þ Ei in Eq. (13), and neglecting terms of

orders higher than 2, gives

rI
1

rI
2

rI
3

2
64

3
75 ¼ kþ 2l k k

k kþ 2l k
k k kþ 2l

2
4

3
5 E1

E2

E3

2
4

3
5� f1

f2

f3

2
4

3
5;

(15)

where

f1¼aE2
1þb E2

2þE2
3

� �
þc E1E2þE1E3ð ÞþdE2E3; (16)

f2 and f3 are found by cyclic permutation of indices 1, 2, and

3, and

a ¼ 3k
2
þ 3lþ lþ 2m; b ¼ 3k

2
þ l; (17a)

c ¼ 2kþ 2lþ 2l; d ¼ 2kþ 2l� 2mþ n: (17b)

Now, Ei are written as functions of ri and fi as

E1 ¼
rI

1

E
� 2�

E
rI

2 þ rI
3

� �
þ f1

E
� 2�

E
f2 þ f3ð Þ; (18)

E2 and E3 are found by cyclic permutation of indices 1, 2,

and 3 and where Young modulus E and Poisson ratio � are

used instead of k and l for the sake of compactness.

Developing now the formulas for fi as functions of rI
i and

Ei, and neglecting higher orders terms [i.e., O E3
i

� �
] yields

E1 ¼
rI

1

E
� 2�

E
rI

2 þ rI
3

� �
þ PrI2

1 þ Q rI2
2 þ rI2

3

� �
þ R rI

1r
I
2 þ rI

1r
I
3

� �
þ SrI

2r
I
3; (19)

E2 and E3 are found by cyclic permutation of indices 1, 2,

and 3 and where

where ri
I are the principal stresses. ri

I are in the direction ii 
since in isotropic materials, the principal directions of strain

coincide with those of stress.

In order to explicitly write Ceq as a function of ri
I, ri

I 

are written as functions of ki. For this, Eqs. (9) and (12b) 
are substituted into the definition of rI½i:e:; rI ¼ ð1=JIÞ 
ðFI@wI=@FIÞ�. One gets
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P¼ak3
1�2ak3

2�2bk3
2�2ck3

2þ2bk1k2
2�2bk2

1k2

þ2ck1k2
2�2ck2

1k2þ3dk1k2
2; (20a)

Q¼ bk3
1 � ak3

2 � 3bk3
2 � ck3

2 � dk3
2 þ ak1k2

2 � ak2
1k2

þbk1k2
2 � bk2

1k2þ 4ck1k2
2 � ck2

1k2þ dk1k2
2 � dk2

1k2;

(20b)

R¼ck3
1�2ak3

2�2bk3
2�4ck3

2�2dk3
2þ2ak1k2

2

�2ak2
1k2þ8bk1k2

2�2bk2
1k2þ5ck1k2

2�2ck2
1k2

�2dk2
1k2þ2dk1k2

2; (20c)

S ¼ dk3
1 � 2dk3

2 þ 6ak1k2
2 þ 4bk1k2

2 � 4bk2
1k2

þ 4ck1k2
2 � 4ck2

1k2 þ 3dk1k2
2 � 4bk3

2 � 4ck3
2;

(20d)

and

k1 ¼
1

E
; k2 ¼

2�

E
: (21)

Equations (19a)–(19c) generalize those given in Ref. 25

for the hydrostatic (rI
1 ¼ rI

2 ¼ rI
3) or uniaxial (rI

2 ¼ rI
3 ¼ 0)

cases. Replacing ki by Ei þ 1 and substituting Eqs. (19) into

Eq. (12a), allows writing Ceq explicitly as a function of rI
i

after some algebra. For the sake of clarity, Ceq is expressed

only as a function of Ei, as a full expression of Ceq rI
i

� �
is

very cumbersome. The final expression writes

Ceq
ijkl ¼ Cijkl Ei þ Ej þ Ek þ El þ 1ð Þ

þ
X3

q;m¼1

dikCjlqqEq þ CijklmmEm

� �
: (22)

This expression allows the study of the AEE of arbitrary

elastic waves.

III. SAFEM FOR ACOUSTO-ELASTICITY

The wave equation [Eq. (7)] derived in Sec. II is now

solved in the specific case of propagation in a plate. Plates

being multi-directional guides, a new reference frame R0

(see Fig. 2) is introduced associated with the direction of

wave propagation, making an angle h around the i3 axis

with i1 [i.e., R0 ¼ i01; i
0
2; i
0
3 ¼ i3

� �
].

The method used to solve equation Eq. (7) is the

SAFEM, an efficient method for computing wave modes in

guiding structures. It has been validated experimentally, for

example, among many others for rails and bars,28 for plates,29

and with predictions made by the method of superposition of

partial bulk waves (SPBW).19 The SAFEM was chosen to com-

pute both the various modal displacements and dispersion

curves. Thanks to the discretization of the plate thickness, it can

further be used straightforwardly to investigate nonuniform

stress distributions in the plate thickness (not considered herein).

Here, the SAFEM based on the work by Bartoli et al.30

for GWs in anisotropic plates is written with some adjust-

ments required to take into account the AEE. For compact-

ness, uw is subsequently denoted by u.

First, Eq. (7) is written in the frame R0, by rotating Ceq,

Ceq
ijkl hð Þ ¼

X3

m;n;p;q¼1

RimRjnRkpRlqCeq
mnpq; (23)

where R is given by

R ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

2
664

3
775 ¼

cos hð Þ � sin h 0

sin hð Þ cos hð Þ 0

0 0 1

2
664

3
775:
(24)

Equation (7) is then multiplied by a virtual displacement du.

In the new frame, one gets

Ceq
ijkl hð Þ dui

@2uk

@X0j@X0l
¼ q0dui

@2ui

@t2
: (25)

Integrating over the volume V rð Þ of the material in the ini-

tial state, in which surface and its normal are denoted by

S rð Þ and n rð Þ, and using integration by parts yields

ð
V rð Þ

@dui

@X0j
Ceq

ijkl hð Þ@uk

@X0l
dV�

ð
S rð Þ

Ceq
ijkl hð Þdui

@uk

@X0l
nl rð ÞdS

¼�
ð

V rð Þ
q0dui

@2ui

@t2
dV: (26)

Dependency on stress is enlightened with the notations

V rð Þ; S rð Þ; and n rð Þ and cannot a priori be ignored. We are

interested in the effect of static stress on waves in guiding

structures whose velocities are fundamentally dependent on

the guide section (on the thickness for a plate). To the best

of our knowledge, the literature on guided propagation in

structures subjected to static stress16,18–22 does not take into

account the effect of stress on the guide section. Here,

stresses of the type rI ¼ diag r1; r2; r3ð Þ are considered,

where ri are the principal stresses. The normal to the surface

is unchanged since the deformation induced by such a stress

transforms a cube, making it rectangular parallelepiped. We

FIG. 2. R0 i01; i
0
2; i
0
3

� �
is the reference frame associated with the wave direc-

tion i01 making an angle h ¼ i1; i
0
1

� �
with the initial frame R i1; i2; i3ð Þ, in a

plate subjected to an arbitrary triaxial stress r ¼ diagðr1; r2;r3Þ.
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further assume that the effects of the static stress are fully

taken into account through the variations of both the elastic

properties and the plate thickness.

The plate surface is considered free [i.e., on S
(@uk=@X0l ¼ 0)]. For a plate infinite in the plane ði01; i02Þ, inte-

gration over V rð Þ reduces to an integration over the thick-

ness d rð Þ in the direction i3. Equation (26) simplifies intoð
d rð Þ

@dui

@X0j
Ceq

ijkl hð Þ @uk

@X0l
dX3¼�

ð
d rð Þ

q0dui
@2ui

@t2
dX3: (27)

When a triaxial load is applied, the thickness is expressed by

d rð Þ ¼ d0 1þ E3 rð Þð Þ; (28)

where d0 denotes the thickness before the load is applied

and E3 denotes the strain in the direction i3 [see Eq. (19c)].

The SAFEM uses an analytical solution for the propagation

in direction (i01) and a finite element solution in the section.

For an infinite plate, the three components of the particle

displacement are only functions of X01 and X3. For one ele-

ment of the discretized thickness, they are written as30

ue X01;X3; t
� �

¼
u1 X3ð Þ
u2 X3ð Þ
u3 X3ð Þ

2
64

3
75ei xt�kX0

1ð Þ

¼ N X3ð ÞQeei xt�kX0
1ð Þ; (29)

where x; t; k denote the angular frequency, the time, and

wave number, respectively. N is the matrix of shape func-

tions and Qe is that of nodal displacements of the element:

N¼

N 1ð Þ

0
0

N 2ð Þ

0

0

..

.

0
0

N nð Þ

0

0

0

N 1ð Þ

0

0

N 2ð Þ

0
0

..

.

0

0

N nð Þ

0

0

0

N 1ð Þ

0

0

N 2ð Þ

0
0

..

.

0

0

N nð Þ

2
666666666666666666666664

3
777777777777777777777775

T

and

Qe¼ u 1ð Þ
1 ;u 1ð Þ

2 ;u 1ð Þ
3 ;…;u

nð Þ
1 ;u

nð Þ
2 ;u

nð Þ
3

h i
T
:

(30)

The notation ½ � nð Þ refers to the number of nodes per ele-

ment (n � 2). Standard developments of the SAFEM30,31

dealing with linear elastodynamics use the symmetries of

Cijkl recalled by Eq. (5). Voigt notation is used to transform

the 4th order stiffness tensor into a 6� 6 matrix. Here,

acousto-elasticity prevents us from doing so, since the

equivalent stiffness tensor Ceq does not possess the required

symmetries. This is easily shown hereafter. The various

terms appearing in Eq. (22) can be sorted into two groups,

Ceq
ijkl¼ Cijkl EiþEjþEkþElþ1ð Þþ

X3

m¼1

CijklmmEm

" #

þ
X3

q¼1

dikCjlqqEq: (31)

The two first terms (in square brackets) possess the same

symmetries as Cijkl [Eq. (5)]. A simple counterexample

proves the third does not. Let us take i ¼ 1, j ¼ 2, k ¼ 1 and

l ¼ 2; one has d11C22qqeq ¼ kþ 2ld2q 6¼ d21C12qqeq ¼ 0;

thus, Ceq
ijkl 6¼ Ceq

jikl. To apply the SAFEM in the presence of

stress by accounting for these lower symmetries, the follow-

ing notation is used (11 ! 1; 22 ! 2; 33 ! 3; 23 ! 4;
31 ! 5; 12 ! 6; 32 ! 7; 13 ! 8; 21 ! 9), allowing

to rewrite Ceq as a 9� 9 matrix. Applying the same notation

to the gradient of displacement @uk=@X0l leads to

@u

@X0
¼ L1

@

@X01

u1

u2

u3

2
64

3
75ei xt�kX0

1ð Þ þL3

@

@X3

u1

u2

u3

2
64

3
75ei xt�kX0

1ð Þ;

(32)

where

L1 ¼

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 1 0

2
66666666666666666664

3
77777777777777777775

; L3 ¼

0 0 0

0 0 0

0 0 1

0 1 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

2
66666666666666666664

3
77777777777777777775

: (33)

The rest of the development of the method is standard and is

found in Refs. 28–30. For one element of the discretized

thickness of the plate, one can readily write

K 1ð Þ
e þ ikK 2ð Þ

e þ k2K 3ð Þ
e � x2Me

	 

Qe ¼ 0; (34)

where elementary stiffness and mass matrices are defined by

K 1ð Þ
e ¼

ð
de rð Þ

BT
1 Ceq

e hð ÞB1 dX3;

K 2ð Þ
e ¼ �

ð
de rð Þ

BT
1 Ceq

e hð ÞB2 � BT
2 Ceq

e hð ÞB1

� �
dX3; (35a)

K 3ð Þ
e ¼

ð
de rð Þ

BT
2 Ceq

e hð ÞB2 dX3 and Me¼
ð

de rð Þ
NTqeNdX3;

(35b)
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and

B1 ¼ L3 �
@N

@X3

and B2 ¼ L1 � N: (36)

de rð Þ, Ceq
e , and qe denote the length, the stiffness, and the

density of the element e in the thickness. The global eigen-

value problem is finally obtained by assembling previous

elementary matrices,

K 1ð Þ þ ikK 2ð Þ þ k2K 3ð Þ � x2M
� �

Q ¼ 0: (37)

All but Kð2Þ are symmetric. To overcome this difficulty,

Eq. (37) is multiplied on the right by TT and on the left

by T, where the matrix T is defined as

T ¼ diag i; 1; 1; i; 1; 1;…½ �. One gets

K 1ð Þ þ k~K
2ð Þ þ k2K 3ð Þ � x2M

	 

~Q ¼ 0; (38)

where ~K
ð2Þ ¼ iTTKð2ÞT and ~Q ¼ TTQ.

At a given frequency (x), the eigenvalues of the system

[Eq. (38)] are the wave numbers of different modes, and the

eigenvectors are the particle displacements of these modes.

Phase and group velocities at a given frequency write

vp ¼
x
k

and vg ¼
~Q

T ~K
2ð Þ ~Qþ 2k ~Q

T
K 3ð Þ ~Q

2x~Q
T
M ~Q

: (39)

Their variations in plates under various loadings are studied

in the following sections.

IV. NUMERICAL SIMULATIONS

The numerical method described in Sec. III to solve the

acoustoelastic wave equation derived in Sec. II is now used

to study the effects of static stress on guided modes. The

plate considered is 5-mm-thick and made of Al 6061-T632

of density equal to 2704 kg.m�3 and of elastic properties

given by Table I.

Plate thickness is discretized using 10 one-dimensional

(1D) three nodes isoparametric elements, a number deter-

mined by numerical experiments to ensure accuracy.

Various effects of static stress on wave propagation in

plates are studied quantitatively. At first (Sec. IV A), modal

particle displacements associated with a mode are shown to

differ from those of pure Lamb and SH waves in unstressed

isotropic plates and to depend on the wave direction relative

to the principal directions of stress. Then (Sec. IV B), the

effect of static stress on plate thickness, thus, on the disper-

sion of guided modes, is studied and shown to be non-

negligible compared to other AEE. In Sec. IV C, velocity

variations with applied stress are studied. Velocity changes

depend non-linearly on stress. This non-linearity is both

frequency-dependent and anisotropic. Finally, in Sec. IV D,

we test the assumption that the AEE induced in a material

by a multiaxial stress (e.g., a triaxial stress) is equal to the

sum of the AEE induced by each uniaxial stress taken

separately.

A. Acoustoelastic modal displacement

The behavior of GWs in a plate subjected to static

stresses differs from that in an unstressed isotropic plate due

to the anisotropy induced by stress. Strictly speaking, modes

in stressed media cannot anymore be grouped as belonging

to families of symmetric or antisymmetric Lamb modes or

SH modes, as mentioned by Gandhi16 and Peddeti and

Santhanam19 but not illustrated numerically.

To be quantitative, the modal components of particle

displacement that would be equal to zero in the absence of

stress are studied. For a wave-vector aligned on i01 these

components are U02 for Lamb modes, and U01 and U03 for SH

modes.

These components are normalized relative to the highest

of the maximum amplitudes of U01 and U03 for Lamb modes,

and to the maximum amplitude of U02 for SH modes. From

now on, one case is treated to exemplify the effects under

study. Quantitatively, results being case-dependent, no gen-

eral rules can strictly be deduced from it. However, many

examples have been studied and we can confidently claim

that effects exhibited in this subsection are qualitatively typi-

cal of those observed in other cases. The plate is subjected to

a bi-axial stress (r1 ¼ 200 MPa; r2 ¼ �100 MPa). Note

that, because of the symmetries of the loading, Lamb and SH

modes propagating along one of the two principal directions

of applied stress possess the same symmetries. Therefore,

components of these modes that are null in an unstressed

medium are still null in these directions of propagation.

Modal solutions are computed using the modified SAFEM

described in Sec. III, for two directions different from the

principal directions of applied stress: h ¼ 30�; 60�. A single-

frequency excitation of 550 kHz is considered (above the first

cut-off frequency of the unstressed guide). Results are shown

in Fig. 3.

The components of interest are no longer null and can

even be of high amplitude. For example, the in-plane com-

ponent of S0 perpendicular to the propagation direction can

be as high as 45% of the component along the propagation

direction. Strictly speaking, one should not name modes in

stressed media the same name as in unstressed ones. In prac-

tice, by following velocity variations in frequency ranges

where modes are distinct, it is always possible to label them

as being quasi-Lamb modes or quasi-SH modes, if required.

B. Effect of stress on plate thickness thus on GWs

The applied mechanical stress affects velocities through

(1) variation of material stiffness, as seen in the expression

of Ceq, (2) variation of material density, which does not

appear explicitly in Sec. II, as the dynamic problem is for-

mulated using the nominal stress instead of Cauchy stress,

TABLE I. Al 6061-T6 elastic constants at 25 �C.

Constant k l l m n

In GPa 56:35 27:5 �281:5 �339 �416
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and (3)—this being specific to GWs—variation of the guide

section (the thickness for plates). Here, a focus is made on

this latter effect, plate thickness variation being described

by Eq. (28).

The same plate as in the previous example is consid-

ered, this time subjected to in-plane bi-axial tractions

(r1 ¼ r2 ¼ 200 MPa). This loading leads to transversally

isotropic elastic properties with respect to the i3 axis, thus,

to isotropic propagation of Lamb and SH waves in the

(i1; i2) plane. This isotropy allows for an easy comparison of

velocity changes induced by stress (a tensor), which in gen-

eral are anisotropic, and those induced by thickness varia-

tion (a scalar), which are isotropic.

Let us define three new variables that depict velocity

changes, these quantities depending on both the applied

stress r and the frequency f . First, DvC is the velocity

change induced by the effect of stress only on elastic proper-

ties (and implicitly on density) given by

DvC ¼ v r; d0; fð Þ � v 0; d0; fð Þ: (40a)

Then, Dvd is the velocity change induced by the effect of

stress only on the thickness d of the plate,

Dvd ¼ v 0; d rð Þ; fð Þ � v 0; d0; fð Þ: (40b)

Finally, DvT is the total velocity change resulting from the

combined effects of stress on elastic properties, density and

thickness, written as

DvT ¼ v r; d rð Þ; fð Þ � v 0; d0; fð Þ: (40c)

Velocity changes of the S0 mode as functions of frequency

are shown in Fig. 4.

In Fig. 4, the total stress effect on velocity DvT (black

solid line) is superimposed with the sum of DvC and Dvd

(black dots) for both phase and group velocity changes,

these two curves almost coincide. This is the first important

result that makes it possible to decompose DvT into DvC and

Dvd.

Even more importantly, these results demonstrate that

the effect of stress on thickness variation, thus on velocity,

cannot be neglected. For example, at 0.56 MHz, phase

velocity variation due to stress effects on elasticity is equal

to DvC � 0 m=s, while the total variation is equal to

DvT � 5:1m=s � Dvd. Therefore, if the effect of stress on

thickness were neglected, the theory would not account for

the phase velocity changes around this frequency. Similarly,

at 0.38 MHz, group velocity variation due to elasticity varia-

tions equals DvC � 0 m=s while the total variation equals

DvT � 13:3m=s � Dvd . One can also notice that Dvd is

higher for S0g than for S0p, due to its stronger dispersive

nature.

Three frequency bands are distinguished, based on the

knowledge of the behaviour of S0 dispersion. In the middle

band B2, Dvd is high because S0 dispersion is strong in this

band. S0 dispersion is relatively weak in B1 and B3 leading

to Dvd � 0 m=s in these frequency bands. Variations of DvC

are less predictable for example in B1, Dvd � 0 m=s while

DvC is large for both phase and group velocities. In B3 both

Dvd and DvC are approximately null. One can conjecture

that, in frequency ranges of high velocity dispersion, DvC is

also high. This has been observed for A0, A1, SH1, and S1

modes, considering the same plate under the same loading.

Lack of place prevents us from showing these supplemen-

tary results.

C. Nonlinearity of the AEE

It has been shown both theoretically16,20 and experi-

mentally16,22,33,34 that stress induced velocity changes for

both guided and bulk waves are linearly dependent on the

applied stress to a good approximation. Nevertheless, devia-

tions emerge at some frequencies and in some propagation

directions for GWs. Let us consider velocity changes of A1

propagating in the directions h ¼ 0� and 45� at the frequen-

cies f ¼ 400 and 500 kHz when the plate is subjected to uni-

axial in-plane stress in the range [–200; 200] MPa along i1.

Results are given in terms of the relative velocity change

Drv defined as Drv ¼ 100� DvT=v 0; d0; fð Þ.
In results at f ¼ 500 kHz [Figs. 5(c) and 5(d)], the rela-

tionship Dvr rð Þ ¼ f rð Þ seems linear for both h ¼ 0� and

h ¼ 45�. At f ¼ 400 kHz, relatively strong nonlinearities

appear for h ¼ 45�. The results of the TAE as presented in

Refs. 1, 7, and 17. show that linearity of bulk wave velocity

change with stress is only a first order approximation in r.

Present results for GWs show obvious nonlinearities in

some of the cases treated. Under a given loading, the rela-

tion may be nonlinear and is strongly frequency dependent

and anisotropic. In Fig. 5(b), one notices that the behavior in

compression (r1 < 0) differs from that in traction (r1 > 0).

This is due to Ceq and d being quadratic (nonlinear) func-

tions of stress. Equations (19a)–19(c), (28), and (22) show

that d �r1ð Þ 6¼ �d þr1ð Þ and Ceq �r1ð Þ 6¼ �Ceq þr1ð Þ.
Therefore, Drv �r1ð Þ 6¼ �Drv þr1ð Þ.

FIG. 3. (Color online) Normalized components of modal particle displace-

ment that would all be equally null in an unstressed medium (see the text

for details). S0 (black), A0 (red), and SH0 (blue) modes at 550 kHz, propa-

gating with an angle of 30� (solid line) 60� (dotted line).
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Again, these results qualitatively exemplify phenomena

observed in other cases but quantitative conclusions cannot

be given since they are strongly case-dependent.

D. Decomposition of the AEE

The formalism developed herein can deal with guided

modes propagating in isotropic materials subjected to triax-

ial loading. Here, as in the previous paragraphs, one exam-

ple is studied to exemplify typical effects observed in the

triaxial case. The same plate as in previous examples is now

subjected to triaxial loading r1 ¼ 100 MPa; r2 ¼ �50 MPa;
and r3 ¼ 80 MPa.

Specifically, effects induced by such a complex loading

are compared to the sum of the effects induced by the three

uniaxial loadings considered separately. The aim is to study

to what extent the assumption of equality can be made.

Mathematically, assuming equal effects induced by

the two cases amounts to saying that the total effect of a

triaxial stress on velocity changes given by a three-

variable function Dvr ¼ Dv r1; r2; r3ð Þ can be approxi-

mated by terms of its Taylor series that only involve one

independent uniaxial loading at a time (terms involving

combinations of two of them or three of them are simply

ignored in this approximation).

In what follows, the assumption is tested for the S0

mode, at four frequencies (0.2, 0.3, 0.5, and 0.6 MHz).

Results are shown in Fig. 6 in terms of relative velocity

changes. For compactness, relative velocity changes due to

the multiaxial stress tensor are denoted by Drvr and those

due to each component ri are denoted by Drvri
.

In the case of relative phase velocity changes, at all

four frequencies, the total relative velocity change due to tri-

axial loading Drvr and the sum of effects due to the three uni-

axial loadings
P

Drvri
almost superimpose, with very small

deviations at f ¼ 0:5 MHz. A similar observation is made for

the group velocity at the two lower frequencies of 0.2 and

0.3 MHz. At the two higher frequencies (0.5 and 0.6 MHz),

Drvr and
P

Drvri
depart from each other. This leads us to

conclude that the validity of the assumption depends on the

frequency and on the direction and is not a general rule.

The assumption of equal effects would be a starting point

for the development of methods for stress characterization

based on velocity changes. But case-dependent parametric

study is required to safely use whatever characterization

method that would be based on this assumption.

Incidentally, present results evidence the anisotropy of

guided wave propagation in stressed media. This is very

well-known and was already described for Lamb waves,16

but also for SH0,35 Rayleigh and skimming longitudinal

waves14 and bulk waves.4

V. COMPARISON WITH EXPERIMENTAL AND
THEORETICAL RESULTS OF THE LITERATURE

Experimental and theoretical results published by

Gandhi et al.16 and theoretical results by Yang et al.20 are

now used for validation purposes of the AEM derived in the

present paper. In experiments presented in Ref. 16, an alu-

minium plate of thickness d0 ¼ 6:35 mm is subjected to a

uniaxial in-plane stress. Three modes are studied: S0 at 250

kHz, A1 at 400 kHz, and S1 at 600 kHz. Two sets of mea-

surements were considered. In the first set, phase velocity

changes of wave propagation in the direction of a uniaxial

loading were measured as functions of the applied stress.

The stress is varied from 0 to 57.5 MPa by step of 5.75 MPa.

In the second set, phase velocity changes were measured in

different directions relative to that of the uniaxial applied

stress (the direction 0� being perpendicular to the direction

of the applied stress of constant value 57.5 MPa).

As far as predictions made using the present model are

concerned, two calculations are made for reproducing the

experimental results. In the first, the total effect of stress on

wave velocity changes is computed. In the second, the effect

of stress on plate thickness is not taken into account. The

various results are superimposed on Fig. 7 for an easy quan-

titative comparison.

Results shown in the left (resp., right) column of Fig. 7

compares phase velocity changes for the first (resp., second)

set of measurements and predictions. Predictions made

using the present AEM are always in better agreement with

measurements than other theoretical predictions. Taking

into account the effects induced by thickness variations

improves the present predictions (solid lines correspond to

predictions made when all the AEEs are taken into account

while dashed lines correspond to predictions without

FIG. 4. (Color online) S0 velocity changes [phase (a), and group (b)] in a plate subjected to r1 ¼ r2 ¼ 200 MPa, as functions of the frequency.
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FIG. 6. S0 relative velocity changes at four different frequencies. Left column, phase velocity; right column, group velocity (frequencies f in MHz).

FIG. 5. A1 relative velocity changes (phase: solid line, group: dotted line) as functions of uniaxial stress applied in direction h ¼ 0�. Left column, propaga-

tion at an angle h ¼ 0�. Right column, h ¼ 45�.
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account of effects induced by thickness variations). This

specific effect induced by thickness variations in the case

at hand is not as high as what was observed in Sec. IV B

(Fig. 4). This is easily explained by the fact that at the fre-

quencies considered in experiments (i.e., S0 at 0.25 MHz,

A1 at 0.4 MHz, and S1 at 0.6 MHz), modes involved are

only weakly dispersive, leading to small Dvd.

More importantly, the significant improvement gained

using the model derived in the present paper compared to

existing models is straightforwardly explained by the fact

that terms neglected in previously published models are

taken into account here and are really part of the solution

(see Sec. II B for a more detailed explanation).

VI. CONCLUSION

In this work, the TAE as described by Toupin and

Bernstein3 then by Norris24 is used to address the problem of

guided wave propagation in plates subjected to multiaxial

stresses. The TAE expresses the equivalent stiffness tensor of a

material of arbitrary symmetry subjected to arbitrary stresses.

Here, this equivalent stiffness tensor was explicitly

written as a function of the applied stress by restricting the

present study to the case of isotropic materials. On this

basis, formulas derived by Abiza et al.25 for uni-axial or

hydrostatic loads were extended up to the case of an arbi-

trary triaxial loading.

FIG. 7. (Color online) Comparison of measurements by Gandhi et al., Ref. 16 theoretical predictions by Gandhi et al. Ref. 16 and by Yang et al. Ref. 20

(when available), and predictions by the present model (AEM) with account of thickness variations (black solid line) or without (black dashed line).
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Then, the explicit stiffness tensor was used to study

AEEs on guided wave propagation in isotropic plates. It

was integrated into the semi-analytical finite element

method—which was slightly adjusted—to compute modal

solution in plates subjected to static stress. This allowed

us to study various effects of stress on GW and to draw a

few conclusions. (1) Particle modal displacements of Lamb

and SH waves in a stressed plate differ from those in a stress-

free one. (2) Stress-induced variations of plate thickness, and

consequently of guided wave velocities, were proven to be

significant whenever modal dispersion arises (thus, null for

the nondispersive mode SH0). (3) Stress-induced velocity

changes vary non-linearly with stress, depend on the fre-

quency, and are anisotropic. (4) The AEEs resulting from tri-

axial loading possibly differ from the sum of effects resulting

from each uniaxial loading.

Finally, measurements16 and predictions16,20 of the lit-

erature were compared to predictions computed with the

present AEM. These latter predictions were shown to be

quantitatively in better agreement with measurements than

existing approximate theories.

APPENDIX: LINEARIZATION OF THE EQUATION
OF MOTION

A detailed calculation is proposed, following Ref. 27

with additional assumptions, allowing the equation of

motion given by Eq. (6) to be linearized and written as the

wave equation given by Eq. (7).

First, rn � N is written as a function of the wave dis-

placement uw and some quantities from the initial and natu-
ral states. For this, F and E are expressed in terms of the

displacement gradient as

Fpb¼
@up

@nb

þdpb; Eij¼
1

2

@ui

@nj

þ@uj

@ni

þ@ua

@ni

@ua

@nj

 !
: (A1)

One can see that E ¼ f @ui=@nj

� �
is non-linear, this non-

linearity being referred to as the geometric non-linearity.

Second, we derive the elastic deformation energy W
with respect to E, which yields

@W

@Eap
¼

X3

k;l;m;n¼1

CapklEkl þ
1

2
CapklmnEklEmn

� �
: (A2)

By substituting Eq. (A1) and Eq. (A2) into the definition of

N in Eq. (2), we find

Nab ¼
1

2
Cabkl

@uk

@nl

þ @ul

@nk

� �
þ 1

2
Cabkl

@ua

@nk

@ua

@nl

þ 1

2
Capkl

@uk

@nl

@up

@nb
þ @ul

@nk

@up

@nb

� �

� 1

8
Cabklmn

�
@uk

@nl

@um

@nn

þ@uk

@nl

@un

@nm

þ @ul

@nk

@um

@nn

þ @ul

@nk

@un

@nm

þ@ua

@nk

@ua

@nl

�
þO

@u

@n

� �3
 !

: (A3)

We now assume that the higher order terms (>2) of the

displacement gradient can be neglected. This assumption

is particularly justified for metallic materials subjected

to loads below yield point. After rearranging terms in

Eq. (A3), one gets

Nab ¼
X3

k;l;m;n¼1

Cabkl
@uk

@nl

þ 1

2
Mbaklmn

@uk

@nl

@um

@nn

� �
; (A4)

where M is given by

Mabklmn ¼ Cabklmn þ Cablndkm þ Cbnkldam þ Cblmndak:

(A5)

Nominal stress being expressed in terms of the displacement

gradient, rn is re-written as a function of the initial dis-

placement uI and of the initial position X, using the chain

rule. Formally, one gets

@

@ni

¼ @

@Xr

@Xr

@ni

¼ @

@Xr

@ uI
r þ nr

� �
@ni

¼ @

@Xi
þ @

@Xr

@uI
r

@ni

¼ @

@Xi
þ @

@Xr
� @

@Xi
þ @

@Xr

@uI
r

@ni

 !
uI

r

¼ @

@Xi
þ @uI

r

@Xi

@

@Xr
þ @uI

r

@Xr

@uI
r

@ni

@

@Xr
: (A6)

By neglecting the higher terms in @uI=@X, Eq. (A6) simpli-

fies into

@

@ni

¼ @

@Xi
þ @uI

r

@Xi

@

@Xr
: (A7)

Substituting Eq. (A7) into Eq. (A4) and assuming Cabkl and

Mbaklmn to be homogenous yields

@Nab

@nb

¼Cabkl
@2uk

@Xb@Xl
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r
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r

@Xl

� �

þ @uI
r

@Xb
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r
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@uk
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s
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� �

þ1

2
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@
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r
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@

@Xr

� �

�
�
@uk

@Xl

@um

@Xn
þ
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@Xn

@uk
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@Xp
þ@uI

s
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@um
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s

@Xl

@uI
p

@Xn

@uk

@Xs

@um

@Xp

�
: (A8)

Now, @Nab=@nb is explicitly written as a function of the

wave displacement uw and of quantities taken in the initial

and natural states (i.e., C and M). We substitute u by uI þuw

in the expression of @Nab=@nb. Four terms emerge. The first

is static and is null as rn � NI ¼ 0. The second is a function

of the product uI
k;l � uw

m;n (½ �k;l ¼ @½ �k=@Xl). The third is a

function only of uw and can be neglected under the assump-

tion that the dynamic deformation is far smaller than the
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static one. The fourth contains higher order terms in uI
k;l or

uw
k;l, which can be neglected compared to uI

k;l � uw
m;n. This is

justified since we are interested in static deformation of

metallic materials below yield point.

Finally, the equation of motion reduces to the following

wave equation, given by

rn � N ¼ q0

@2uw

@t2
) Ceq

abkl

@2uw
k

@Xb@Xl
¼ q0

@2uw
a

@t2
: (A9)
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